基于神经网络的模糊c均值聚类算法的MRI分割

P. M. Birgani, M. Ashtiyani, S. Asadi
{"title":"基于神经网络的模糊c均值聚类算法的MRI分割","authors":"P. M. Birgani, M. Ashtiyani, S. Asadi","doi":"10.1109/ICTTA.2008.4530110","DOIUrl":null,"url":null,"abstract":"The advantages of magnetic resonance imaging (MRI) over other diagnostic image modalities are its high spatial resolution and excellent discrimination of soft tissues. Many neurological conditions alter the shape, volume, and distribution of brain tissue; MRI is the preferred imaging modality for examining these conditions which requires segmentation into different intensity classes which are regarded as the best available representations for biological tissues. There is a need for computer analysis of MRI such as precise delineation of tumors and reliable, reproducible segmentation of images. The aim of this work is to propose a FCM clustering algorithm basis neural network for MRI segmentation.","PeriodicalId":330215,"journal":{"name":"2008 3rd International Conference on Information and Communication Technologies: From Theory to Applications","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"MRI Segmentation Using Fuzzy C-means Clustering Algorithm Basis Neural Network\",\"authors\":\"P. M. Birgani, M. Ashtiyani, S. Asadi\",\"doi\":\"10.1109/ICTTA.2008.4530110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The advantages of magnetic resonance imaging (MRI) over other diagnostic image modalities are its high spatial resolution and excellent discrimination of soft tissues. Many neurological conditions alter the shape, volume, and distribution of brain tissue; MRI is the preferred imaging modality for examining these conditions which requires segmentation into different intensity classes which are regarded as the best available representations for biological tissues. There is a need for computer analysis of MRI such as precise delineation of tumors and reliable, reproducible segmentation of images. The aim of this work is to propose a FCM clustering algorithm basis neural network for MRI segmentation.\",\"PeriodicalId\":330215,\"journal\":{\"name\":\"2008 3rd International Conference on Information and Communication Technologies: From Theory to Applications\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 3rd International Conference on Information and Communication Technologies: From Theory to Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTTA.2008.4530110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 3rd International Conference on Information and Communication Technologies: From Theory to Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTTA.2008.4530110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

摘要

磁共振成像(MRI)相对于其他诊断图像方式的优点是其高空间分辨率和对软组织的良好识别。许多神经系统疾病会改变脑组织的形状、体积和分布;MRI是检查这些条件的首选成像方式,这些条件需要分割成不同的强度类别,这些强度类别被认为是生物组织的最佳可用表示。有必要对MRI进行计算机分析,如肿瘤的精确描绘和可靠的,可重复的图像分割。本文的目的是提出一种基于神经网络的FCM聚类算法用于MRI分割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MRI Segmentation Using Fuzzy C-means Clustering Algorithm Basis Neural Network
The advantages of magnetic resonance imaging (MRI) over other diagnostic image modalities are its high spatial resolution and excellent discrimination of soft tissues. Many neurological conditions alter the shape, volume, and distribution of brain tissue; MRI is the preferred imaging modality for examining these conditions which requires segmentation into different intensity classes which are regarded as the best available representations for biological tissues. There is a need for computer analysis of MRI such as precise delineation of tumors and reliable, reproducible segmentation of images. The aim of this work is to propose a FCM clustering algorithm basis neural network for MRI segmentation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Weight based DSR for Mobile Ad Hoc Networks Remote Control and Overall Administration of Computer Networks, Using Short Message Service On the Performance of Matching MMPP to SRD and LRD Traffic Using Algorithm LAMBDA Large Scale Data Management in Grid Systems: a Survey Scheduling Multiple Concurrent Projects Using Shared Resources with Allocation Costs and Technical Constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1