三维分布网络中隐藏层次的提取

C. Modes, M. Magnasco, E. Katifori
{"title":"三维分布网络中隐藏层次的提取","authors":"C. Modes, M. Magnasco, E. Katifori","doi":"10.1103/PHYSREVX.6.031009","DOIUrl":null,"url":null,"abstract":"Natural and man-made transport webs are frequently dominated by dense sets of nested cycles. The architecture of these networks, as defined by the topology and edge weights, determines how efficiently the networks perform their function. Yet, the set of tools that can characterize such a weighted cycle-rich architecture in a physically relevant, mathematically compact way is sparse. In order to fill this void, we have developed a new algorithm that rests on an abstraction of the physical `tiling' in the case of a two dimensional network to an effective tiling of an abstract surface in space that the network may be thought to sit in. Generically these abstract surfaces are richer than the flat plane and as a result there are now two families of fundamental units that may aggregate upon cutting weakest links -- the plaquettes of the tiling and the longer `topological' cycles associated with the abstract surface itself. Upon sequential removal of the weakest links, as determined by the edge weight, neighboring plaquettes merge and a tree characterizing this merging process results. The properties of this characteristic tree can provide the physical and topological data required to describe the architecture of the network and to build physical models. The new algorithm can be used for automated phenotypic characterization of any weighted network whose structure is dominated by cycles, such as mammalian vasculature in the organs, the root networks of clonal colonies like quaking aspen, or the force networks in jammed granular matter.","PeriodicalId":119149,"journal":{"name":"arXiv: Quantitative Methods","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Extracting Hidden Hierarchies in 3D Distribution Networks\",\"authors\":\"C. Modes, M. Magnasco, E. Katifori\",\"doi\":\"10.1103/PHYSREVX.6.031009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Natural and man-made transport webs are frequently dominated by dense sets of nested cycles. The architecture of these networks, as defined by the topology and edge weights, determines how efficiently the networks perform their function. Yet, the set of tools that can characterize such a weighted cycle-rich architecture in a physically relevant, mathematically compact way is sparse. In order to fill this void, we have developed a new algorithm that rests on an abstraction of the physical `tiling' in the case of a two dimensional network to an effective tiling of an abstract surface in space that the network may be thought to sit in. Generically these abstract surfaces are richer than the flat plane and as a result there are now two families of fundamental units that may aggregate upon cutting weakest links -- the plaquettes of the tiling and the longer `topological' cycles associated with the abstract surface itself. Upon sequential removal of the weakest links, as determined by the edge weight, neighboring plaquettes merge and a tree characterizing this merging process results. The properties of this characteristic tree can provide the physical and topological data required to describe the architecture of the network and to build physical models. The new algorithm can be used for automated phenotypic characterization of any weighted network whose structure is dominated by cycles, such as mammalian vasculature in the organs, the root networks of clonal colonies like quaking aspen, or the force networks in jammed granular matter.\",\"PeriodicalId\":119149,\"journal\":{\"name\":\"arXiv: Quantitative Methods\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Quantitative Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PHYSREVX.6.031009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantitative Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVX.6.031009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

自然和人为的运输网经常被密集的嵌套循环所支配。这些网络的体系结构(由拓扑和边权定义)决定了网络执行其功能的效率。然而,能够以物理上相关的、数学上紧凑的方式描述这种加权循环丰富的体系结构的工具集是稀疏的。为了填补这一空白,我们开发了一种新的算法,该算法依赖于二维网络中物理“平铺”的抽象,以有效地平铺网络可能所在的空间中的抽象表面。一般来说,这些抽象表面比平面更丰富,因此现在有两个基本单元家族可以在切割最薄弱的环节时聚集在一起——瓷砖的斑块和与抽象表面本身相关的更长的“拓扑”周期。在顺序移除最弱的链接后,由边缘权重决定,相邻的斑块合并,并产生表征该合并过程的树。该特征树的属性可以提供描述网络体系结构和构建物理模型所需的物理和拓扑数据。新算法可用于任何结构以周期为主导的加权网络的自动表型表征,例如哺乳动物器官中的脉管系统,克隆菌落(如颤杨)的根网络,或堵塞颗粒物质中的力网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Extracting Hidden Hierarchies in 3D Distribution Networks
Natural and man-made transport webs are frequently dominated by dense sets of nested cycles. The architecture of these networks, as defined by the topology and edge weights, determines how efficiently the networks perform their function. Yet, the set of tools that can characterize such a weighted cycle-rich architecture in a physically relevant, mathematically compact way is sparse. In order to fill this void, we have developed a new algorithm that rests on an abstraction of the physical `tiling' in the case of a two dimensional network to an effective tiling of an abstract surface in space that the network may be thought to sit in. Generically these abstract surfaces are richer than the flat plane and as a result there are now two families of fundamental units that may aggregate upon cutting weakest links -- the plaquettes of the tiling and the longer `topological' cycles associated with the abstract surface itself. Upon sequential removal of the weakest links, as determined by the edge weight, neighboring plaquettes merge and a tree characterizing this merging process results. The properties of this characteristic tree can provide the physical and topological data required to describe the architecture of the network and to build physical models. The new algorithm can be used for automated phenotypic characterization of any weighted network whose structure is dominated by cycles, such as mammalian vasculature in the organs, the root networks of clonal colonies like quaking aspen, or the force networks in jammed granular matter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Beating temporal phase sensitivity limit in off-axis interferometry based quantitative phase microscopy A review of mass concentrations of Bramblings Fringilla montifringilla: implications for assessment of large numbers of birds Spatial Registration Evaluation of [18F]-MK6240 PET Comparison of surface thermal patterns of horses and donkeys in IRT images Utilization of 3D segmentation for measurement of pediatric brain tumor outcomes after treatment: review of available tools, step-by-step instructions, and applications to clinical practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1