基于脑电图的左/右/休息运动意象任务分类

Stan Zakrzewski, Bartlomiej Stasiak, A. Wojciechowski
{"title":"基于脑电图的左/右/休息运动意象任务分类","authors":"Stan Zakrzewski, Bartlomiej Stasiak, A. Wojciechowski","doi":"10.1109/Informatics57926.2022.10083491","DOIUrl":null,"url":null,"abstract":"This paper presents an EEG-based Brain-Computer Interface (BCI) designed for classification of motor imagery tasks. Apart from the imagined right-hand / left-hand movements, a third class - the resting (idle) state - is also included. The classification is based on Linear Discriminant Analysis (LDA) and Common Spatial Patterns (CSP) filtering of the band-limited EEG signal acquired from 10 electrodes placed over the motor cortex area. The system, planned for integration with a virtual reality (VR) environment and designed for future neurorehabilitation applications is tested on an experimental database comprising 52 subjects. The observed variability be-tween individual participants and selected subgroups is further analysed with statistical tools, revealing significant differences with respect to gender, age and individual motor imagery task classes.","PeriodicalId":101488,"journal":{"name":"2022 IEEE 16th International Scientific Conference on Informatics (Informatics)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EEG-based left-hand/right-hand/rest motor imagery task classification\",\"authors\":\"Stan Zakrzewski, Bartlomiej Stasiak, A. Wojciechowski\",\"doi\":\"10.1109/Informatics57926.2022.10083491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an EEG-based Brain-Computer Interface (BCI) designed for classification of motor imagery tasks. Apart from the imagined right-hand / left-hand movements, a third class - the resting (idle) state - is also included. The classification is based on Linear Discriminant Analysis (LDA) and Common Spatial Patterns (CSP) filtering of the band-limited EEG signal acquired from 10 electrodes placed over the motor cortex area. The system, planned for integration with a virtual reality (VR) environment and designed for future neurorehabilitation applications is tested on an experimental database comprising 52 subjects. The observed variability be-tween individual participants and selected subgroups is further analysed with statistical tools, revealing significant differences with respect to gender, age and individual motor imagery task classes.\",\"PeriodicalId\":101488,\"journal\":{\"name\":\"2022 IEEE 16th International Scientific Conference on Informatics (Informatics)\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 16th International Scientific Conference on Informatics (Informatics)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Informatics57926.2022.10083491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 16th International Scientific Conference on Informatics (Informatics)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Informatics57926.2022.10083491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于脑电图的脑机接口(BCI),用于运动想象任务的分类。除了想象中的右手/左手运动,还包括第三种状态——休息(空闲)状态。该分类是基于线性判别分析(LDA)和共同空间模式(CSP)滤波的带限EEG信号,这些信号来自放置在运动皮层区域的10个电极。该系统计划与虚拟现实(VR)环境集成,并为未来的神经康复应用而设计,在包含52个受试者的实验数据库上进行测试。观察到的个体参与者和选定的亚组之间的变异性用统计工具进一步分析,揭示了性别、年龄和个体运动意象任务类别的显著差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EEG-based left-hand/right-hand/rest motor imagery task classification
This paper presents an EEG-based Brain-Computer Interface (BCI) designed for classification of motor imagery tasks. Apart from the imagined right-hand / left-hand movements, a third class - the resting (idle) state - is also included. The classification is based on Linear Discriminant Analysis (LDA) and Common Spatial Patterns (CSP) filtering of the band-limited EEG signal acquired from 10 electrodes placed over the motor cortex area. The system, planned for integration with a virtual reality (VR) environment and designed for future neurorehabilitation applications is tested on an experimental database comprising 52 subjects. The observed variability be-tween individual participants and selected subgroups is further analysed with statistical tools, revealing significant differences with respect to gender, age and individual motor imagery task classes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Software Engineers' Questions and Answers on Stack Exchange Collision detection and response approaches for computer muscle modelling Supervised learning data preprocessing for short-term traffic flow prediction A 1D CNN-based model for IoT anomaly detection using INT data Image steganography with using QR code
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1