神经网络在超声无损检测中的应用(综述)

V. G. Badalyan, A. Vopilkin
{"title":"神经网络在超声无损检测中的应用(综述)","authors":"V. G. Badalyan, A. Vopilkin","doi":"10.14489/td.2022.05.pp.012-025","DOIUrl":null,"url":null,"abstract":"A review of the current state and experience of the practical application of artificial neural networks in ultrasonic non-destructive testing is presented. Separately, the features of the use of neural networks for the classification of defects according to data obtained by echo-pulse methods and the TOFD are considered. Information is given on the efficiency of defect classification using neural networks for various ultrasonic testing tasks.","PeriodicalId":432853,"journal":{"name":"Kontrol'. Diagnostika","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"APPLICATION OF NEURAL NETWORKS IN ULTRASONIC NON-DESTRUCTIVE TESTING (REVIEW)\",\"authors\":\"V. G. Badalyan, A. Vopilkin\",\"doi\":\"10.14489/td.2022.05.pp.012-025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A review of the current state and experience of the practical application of artificial neural networks in ultrasonic non-destructive testing is presented. Separately, the features of the use of neural networks for the classification of defects according to data obtained by echo-pulse methods and the TOFD are considered. Information is given on the efficiency of defect classification using neural networks for various ultrasonic testing tasks.\",\"PeriodicalId\":432853,\"journal\":{\"name\":\"Kontrol'. Diagnostika\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kontrol'. Diagnostika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14489/td.2022.05.pp.012-025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kontrol'. Diagnostika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14489/td.2022.05.pp.012-025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

综述了人工神经网络在超声无损检测中的应用现状和经验。另外,考虑了利用神经网络根据回波脉冲法和TOFD获得的数据进行缺陷分类的特点。给出了利用神经网络对各种超声检测任务进行缺陷分类的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
APPLICATION OF NEURAL NETWORKS IN ULTRASONIC NON-DESTRUCTIVE TESTING (REVIEW)
A review of the current state and experience of the practical application of artificial neural networks in ultrasonic non-destructive testing is presented. Separately, the features of the use of neural networks for the classification of defects according to data obtained by echo-pulse methods and the TOFD are considered. Information is given on the efficiency of defect classification using neural networks for various ultrasonic testing tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DIAGNOSTICS OF INTERELECTRODE GAP’S CONDITION USING VIBROACOUSTIC EMISSION APPLICATION OF ACOUSTIC EMISSION METHOD FOR DETECTING DIFFUSION INTERLAYERS IN DIFFERENT WELDED JOINTS CALIBRATION OF THE PIEZOELECTRIC DYNAMOMETER KISTLER USING A MEASURING DEVICE BASED ON A SAMPLE COMPRESSION DYNAMOMETER TOPOLOGY OF MANUFACTURING A SORPTION-CAPACITIVE HUMIDITY SENSOR BASED ON THIN FILMS OBTAINED BY MICROARC OXIDATION AND MAGNETRON SPUTTERING INVESTIGATION OF THE TEMPERATURE ERROR OF COORDINATE MEASURING MACHINES
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1