测量光网络可恢复性的拓扑方法

IF 1.9 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Optical Switching and Networking Pub Date : 2021-09-01 DOI:10.1016/j.osn.2021.100617
Peng Sun, Zhidong He, Robert E. Kooij, Piet Van Mieghem
{"title":"测量光网络可恢复性的拓扑方法","authors":"Peng Sun,&nbsp;Zhidong He,&nbsp;Robert E. Kooij,&nbsp;Piet Van Mieghem","doi":"10.1016/j.osn.2021.100617","DOIUrl":null,"url":null,"abstract":"<div><p>Optical networks are vulnerable to failures due to targeted attacks or large-scale disasters. The recoverability of optical networks refers to the ability of an optical network to return to a desired performance level after suffering topological perturbations such as link failures. This paper proposes a general topological approach and recoverability indicators to measure the network recoverability for optical networks for two recovery scenarios: 1) only the links which are damaged in the failure process can be recovered and 2) links can be established between any pair of nodes that have no link between them after the failure process. We use the robustness envelopes of realizations and the histograms of two recoverability indicators to illustrate the impact of the random failure and recovery processes on the network performance. By applying the average two-terminal reliability and the network efficiency as robustness metrics, we employ the proposed approach to assess 20 real-world optical networks. Numerical results validate that the network recoverability is coupled to the network topology, the robustness metric and the recovery strategy. We further show that a greedy recovery strategy could provide a near-optimal recovery performance for the robustness metrics. We investigate the sensitivity of network recoverability and find that the sensitivity of the recoverability indicators varies according to different robustness metrics and scenarios. We also find that assortativity has the strongest correlation with both recoverability indicators.</p></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":"41 ","pages":"Article 100617"},"PeriodicalIF":1.9000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.osn.2021.100617","citationCount":"5","resultStr":"{\"title\":\"Topological approach to measure the recoverability of optical networks\",\"authors\":\"Peng Sun,&nbsp;Zhidong He,&nbsp;Robert E. Kooij,&nbsp;Piet Van Mieghem\",\"doi\":\"10.1016/j.osn.2021.100617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Optical networks are vulnerable to failures due to targeted attacks or large-scale disasters. The recoverability of optical networks refers to the ability of an optical network to return to a desired performance level after suffering topological perturbations such as link failures. This paper proposes a general topological approach and recoverability indicators to measure the network recoverability for optical networks for two recovery scenarios: 1) only the links which are damaged in the failure process can be recovered and 2) links can be established between any pair of nodes that have no link between them after the failure process. We use the robustness envelopes of realizations and the histograms of two recoverability indicators to illustrate the impact of the random failure and recovery processes on the network performance. By applying the average two-terminal reliability and the network efficiency as robustness metrics, we employ the proposed approach to assess 20 real-world optical networks. Numerical results validate that the network recoverability is coupled to the network topology, the robustness metric and the recovery strategy. We further show that a greedy recovery strategy could provide a near-optimal recovery performance for the robustness metrics. We investigate the sensitivity of network recoverability and find that the sensitivity of the recoverability indicators varies according to different robustness metrics and scenarios. We also find that assortativity has the strongest correlation with both recoverability indicators.</p></div>\",\"PeriodicalId\":54674,\"journal\":{\"name\":\"Optical Switching and Networking\",\"volume\":\"41 \",\"pages\":\"Article 100617\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.osn.2021.100617\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Switching and Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S157342772100014X\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Switching and Networking","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S157342772100014X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 5

摘要

光网络容易受到针对性攻击或大规模灾难的破坏。光网络的可恢复性是指光网络在遭受拓扑扰动(如链路故障)后恢复到预期性能水平的能力。本文提出了一种测量光网络网络可恢复性的通用拓扑方法和可恢复性指标,用于两种恢复场景:1)只有在故障过程中损坏的链路可以恢复,2)故障过程后任意对节点之间没有链路的节点之间可以建立链路。我们使用实现的鲁棒性包络和两个可恢复性指标的直方图来说明随机故障和恢复过程对网络性能的影响。通过采用平均双端可靠性和网络效率作为鲁棒性指标,我们采用所提出的方法评估了20个真实的光网络。数值结果验证了网络可恢复性与网络拓扑结构、鲁棒性度量和恢复策略是耦合的。我们进一步证明了贪婪恢复策略可以为鲁棒性指标提供接近最优的恢复性能。我们研究了网络可恢复性的敏感性,发现可恢复性指标的敏感性根据不同的鲁棒性度量和场景而变化。我们还发现,分类性与两个可恢复性指标有最强的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Topological approach to measure the recoverability of optical networks

Optical networks are vulnerable to failures due to targeted attacks or large-scale disasters. The recoverability of optical networks refers to the ability of an optical network to return to a desired performance level after suffering topological perturbations such as link failures. This paper proposes a general topological approach and recoverability indicators to measure the network recoverability for optical networks for two recovery scenarios: 1) only the links which are damaged in the failure process can be recovered and 2) links can be established between any pair of nodes that have no link between them after the failure process. We use the robustness envelopes of realizations and the histograms of two recoverability indicators to illustrate the impact of the random failure and recovery processes on the network performance. By applying the average two-terminal reliability and the network efficiency as robustness metrics, we employ the proposed approach to assess 20 real-world optical networks. Numerical results validate that the network recoverability is coupled to the network topology, the robustness metric and the recovery strategy. We further show that a greedy recovery strategy could provide a near-optimal recovery performance for the robustness metrics. We investigate the sensitivity of network recoverability and find that the sensitivity of the recoverability indicators varies according to different robustness metrics and scenarios. We also find that assortativity has the strongest correlation with both recoverability indicators.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optical Switching and Networking
Optical Switching and Networking COMPUTER SCIENCE, INFORMATION SYSTEMS-OPTICS
CiteScore
5.20
自引率
18.20%
发文量
29
审稿时长
77 days
期刊介绍: Optical Switching and Networking (OSN) is an archival journal aiming to provide complete coverage of all topics of interest to those involved in the optical and high-speed opto-electronic networking areas. The editorial board is committed to providing detailed, constructive feedback to submitted papers, as well as a fast turn-around time. Optical Switching and Networking considers high-quality, original, and unpublished contributions addressing all aspects of optical and opto-electronic networks. Specific areas of interest include, but are not limited to: • Optical and Opto-Electronic Backbone, Metropolitan and Local Area Networks • Optical Data Center Networks • Elastic optical networks • Green Optical Networks • Software Defined Optical Networks • Novel Multi-layer Architectures and Protocols (Ethernet, Internet, Physical Layer) • Optical Networks for Interet of Things (IOT) • Home Networks, In-Vehicle Networks, and Other Short-Reach Networks • Optical Access Networks • Optical Data Center Interconnection Systems • Optical OFDM and coherent optical network systems • Free Space Optics (FSO) networks • Hybrid Fiber - Wireless Networks • Optical Satellite Networks • Visible Light Communication Networks • Optical Storage Networks • Optical Network Security • Optical Network Resiliance and Reliability • Control Plane Issues and Signaling Protocols • Optical Quality of Service (OQoS) and Impairment Monitoring • Optical Layer Anycast, Broadcast and Multicast • Optical Network Applications, Testbeds and Experimental Networks • Optical Network for Science and High Performance Computing Networks
期刊最新文献
Modeling and upgrade of disaster-resilient interdependent networks using machine learning Self-adjusting resilient control plane for virtual software-defined optical networks NFV recovery strategies for critical services after massive failures in optical networks Editorial Board An architecture to improve performance of software-defined optical networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1