{"title":"通过离线特征转移和搜索窗口权重提高场景识别性能","authors":"Chu-Tak Li, W. Siu, D. Lun","doi":"10.1109/ICDSP.2018.8631883","DOIUrl":null,"url":null,"abstract":"This paper presents a key frame recognition algorithm, using novel offline feature-shifts approach and search window weights. We extract effective feature patches from key frames with an offline feature-shifts approach for real-time key frame recognition. We focus on practical situations in which blurring and shifts in viewpoints occur in our dataset. We compare our method with some conventional keypoint-based matching methods and the newest CNN features for scene recognition. The experimental results illustrate that our method can reasonably preserve the performance in key frame recognition when comparing with methods using online feature-shifts approach. Our proposed method provides larger tolerance of unmatched pairs which is useful for decision making in real-time systems. Moreover, our method is robust to illumination and blurring. We achieve 90% accuracy in a nighttime sequence while CNN approach only attains 60% accuracy. Our method only requires 33.8 ms to match a frame on average using a regular desktop, which is 4 times faster than CNN approach with only CPU mode.","PeriodicalId":218806,"journal":{"name":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Boosting the Performance of Scene Recognition via Offline Feature-Shifts and Search Window Weights\",\"authors\":\"Chu-Tak Li, W. Siu, D. Lun\",\"doi\":\"10.1109/ICDSP.2018.8631883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a key frame recognition algorithm, using novel offline feature-shifts approach and search window weights. We extract effective feature patches from key frames with an offline feature-shifts approach for real-time key frame recognition. We focus on practical situations in which blurring and shifts in viewpoints occur in our dataset. We compare our method with some conventional keypoint-based matching methods and the newest CNN features for scene recognition. The experimental results illustrate that our method can reasonably preserve the performance in key frame recognition when comparing with methods using online feature-shifts approach. Our proposed method provides larger tolerance of unmatched pairs which is useful for decision making in real-time systems. Moreover, our method is robust to illumination and blurring. We achieve 90% accuracy in a nighttime sequence while CNN approach only attains 60% accuracy. Our method only requires 33.8 ms to match a frame on average using a regular desktop, which is 4 times faster than CNN approach with only CPU mode.\",\"PeriodicalId\":218806,\"journal\":{\"name\":\"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2018.8631883\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2018.8631883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Boosting the Performance of Scene Recognition via Offline Feature-Shifts and Search Window Weights
This paper presents a key frame recognition algorithm, using novel offline feature-shifts approach and search window weights. We extract effective feature patches from key frames with an offline feature-shifts approach for real-time key frame recognition. We focus on practical situations in which blurring and shifts in viewpoints occur in our dataset. We compare our method with some conventional keypoint-based matching methods and the newest CNN features for scene recognition. The experimental results illustrate that our method can reasonably preserve the performance in key frame recognition when comparing with methods using online feature-shifts approach. Our proposed method provides larger tolerance of unmatched pairs which is useful for decision making in real-time systems. Moreover, our method is robust to illumination and blurring. We achieve 90% accuracy in a nighttime sequence while CNN approach only attains 60% accuracy. Our method only requires 33.8 ms to match a frame on average using a regular desktop, which is 4 times faster than CNN approach with only CPU mode.