异质单细胞蛋白质组学数据中基于最近邻的病毒重构非参数检验

Trambak Banerjee, B. Bhattacharya, Gourab Mukherjee
{"title":"异质单细胞蛋白质组学数据中基于最近邻的病毒重构非参数检验","authors":"Trambak Banerjee, B. Bhattacharya, Gourab Mukherjee","doi":"10.1214/20-aoas1362","DOIUrl":null,"url":null,"abstract":"An important problem in contemporary immunology studies based on single-cell protein expression data is to determine whether cellular expressions are remodeled post infection by a pathogen. One natural approach for detecting such changes is to use non-parametric two-sample statistical tests. However, in single-cell studies, direct application of these tests is often inadequate because single-cell level expression data from uninfected populations often contains attributes of several latent sub-populations with highly heterogeneous characteristics. As a result, viruses often infect these different sub-populations at different rates in which case the traditional nonparametric two-sample tests for checking similarity in distributions are no longer conservative. We propose a new nonparametric method for Testing Remodeling Under Heterogeneity (TRUH) that can accurately detect changes in the infected samples compared to possibly heterogeneous uninfected samples. Our testing framework is based on composite nulls and is designed to allow the null model to encompass the possibility that the infected samples, though unaltered by the virus, might be dominantly arising from under-represented sub-populations in the baseline data. The TRUH statistic, which uses nearest neighbor projections of the infected samples into the baseline uninfected population, is calibrated using a novel bootstrap algorithm. We demonstrate the non-asymptotic performance of the test via simulation experiments and derive the large sample limit of the test statistic, which provides theoretical support towards consistent asymptotic calibration of the test. We use the TRUH statistic for studying remodeling in tonsillar T cells under different types of HIV infection and find that unlike traditional tests, TRUH based statistical inference conforms to the biologically validated immunological theories on HIV infection.","PeriodicalId":186390,"journal":{"name":"arXiv: Methodology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A nearest-neighbor based nonparametric test for viral remodeling in heterogeneous single-cell proteomic data\",\"authors\":\"Trambak Banerjee, B. Bhattacharya, Gourab Mukherjee\",\"doi\":\"10.1214/20-aoas1362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An important problem in contemporary immunology studies based on single-cell protein expression data is to determine whether cellular expressions are remodeled post infection by a pathogen. One natural approach for detecting such changes is to use non-parametric two-sample statistical tests. However, in single-cell studies, direct application of these tests is often inadequate because single-cell level expression data from uninfected populations often contains attributes of several latent sub-populations with highly heterogeneous characteristics. As a result, viruses often infect these different sub-populations at different rates in which case the traditional nonparametric two-sample tests for checking similarity in distributions are no longer conservative. We propose a new nonparametric method for Testing Remodeling Under Heterogeneity (TRUH) that can accurately detect changes in the infected samples compared to possibly heterogeneous uninfected samples. Our testing framework is based on composite nulls and is designed to allow the null model to encompass the possibility that the infected samples, though unaltered by the virus, might be dominantly arising from under-represented sub-populations in the baseline data. The TRUH statistic, which uses nearest neighbor projections of the infected samples into the baseline uninfected population, is calibrated using a novel bootstrap algorithm. We demonstrate the non-asymptotic performance of the test via simulation experiments and derive the large sample limit of the test statistic, which provides theoretical support towards consistent asymptotic calibration of the test. We use the TRUH statistic for studying remodeling in tonsillar T cells under different types of HIV infection and find that unlike traditional tests, TRUH based statistical inference conforms to the biologically validated immunological theories on HIV infection.\",\"PeriodicalId\":186390,\"journal\":{\"name\":\"arXiv: Methodology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/20-aoas1362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/20-aoas1362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

基于单细胞蛋白表达数据的当代免疫学研究的一个重要问题是确定细胞表达是否在病原体感染后被重塑。检测这种变化的一种自然方法是使用非参数双样本统计检验。然而,在单细胞研究中,这些测试的直接应用往往是不够的,因为来自未感染群体的单细胞水平表达数据往往包含几个具有高度异质性特征的潜在亚群体的属性。结果,病毒常常以不同的速率感染这些不同的亚群,在这种情况下,传统的用于检查分布相似性的非参数双样本检验不再保守。我们提出了一种新的非参数方法来测试异质性下的重塑(TRUH),可以准确地检测感染样本与可能异质性的未感染样本之间的变化。我们的测试框架以复合零值为基础,旨在使零值模型包含这样一种可能性,即感染样本虽然未被病毒改变,但可能主要来自基线数据中代表性不足的亚群。TRUH统计数据使用最近邻的感染样本投影到基线未感染人群中,使用一种新的自引导算法进行校准。我们通过模拟实验证明了检验的非渐近性能,并推导了检验统计量的大样本极限,为检验的一致渐近校准提供了理论支持。我们使用TRUH统计量研究了不同类型HIV感染下扁桃体T细胞的重塑,发现与传统测试不同,基于TRUH的统计推断符合HIV感染的生物学验证免疫学理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A nearest-neighbor based nonparametric test for viral remodeling in heterogeneous single-cell proteomic data
An important problem in contemporary immunology studies based on single-cell protein expression data is to determine whether cellular expressions are remodeled post infection by a pathogen. One natural approach for detecting such changes is to use non-parametric two-sample statistical tests. However, in single-cell studies, direct application of these tests is often inadequate because single-cell level expression data from uninfected populations often contains attributes of several latent sub-populations with highly heterogeneous characteristics. As a result, viruses often infect these different sub-populations at different rates in which case the traditional nonparametric two-sample tests for checking similarity in distributions are no longer conservative. We propose a new nonparametric method for Testing Remodeling Under Heterogeneity (TRUH) that can accurately detect changes in the infected samples compared to possibly heterogeneous uninfected samples. Our testing framework is based on composite nulls and is designed to allow the null model to encompass the possibility that the infected samples, though unaltered by the virus, might be dominantly arising from under-represented sub-populations in the baseline data. The TRUH statistic, which uses nearest neighbor projections of the infected samples into the baseline uninfected population, is calibrated using a novel bootstrap algorithm. We demonstrate the non-asymptotic performance of the test via simulation experiments and derive the large sample limit of the test statistic, which provides theoretical support towards consistent asymptotic calibration of the test. We use the TRUH statistic for studying remodeling in tonsillar T cells under different types of HIV infection and find that unlike traditional tests, TRUH based statistical inference conforms to the biologically validated immunological theories on HIV infection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Revisiting Empirical Bayes Methods and Applications to Special Types of Data Flexible Bayesian modelling of concomitant covariate effects in mixture models A Critique of Differential Abundance Analysis, and Advocacy for an Alternative Post-Processing of MCMC Conditional variance estimator for sufficient dimension reduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1