采用信号补偿的非接触心电

G. Peng, M. Bocko
{"title":"采用信号补偿的非接触心电","authors":"G. Peng, M. Bocko","doi":"10.1109/BioCAS.2013.6679639","DOIUrl":null,"url":null,"abstract":"Non-contact ECG monitoring is an attractive option in a number of applications such as long-term health monitoring where traditional adhesive ECG sensors would cause skin irritation and require frequent replacement. Also, integrating ECG sensors into furniture, automobile seats and elsewhere in the environment will enable non-invasive sensing of cardiac signals. Subject-electrode relative motion causes spurious signals and significant signal distortion. The ECG signal of interest as well as static charge and electromagnetic interference are modulated by changes in the coupling capacitance between the electrodes and subject, which leads to significant distortions. The focus of this paper is the development of a non-contacting ECG sensing system including the electrodes, interface electronics and a signal-processing unit that work together to address this issue. The subject-to-electrode distance is continuously monitored by a secondary sensing circuit that uses the ECG electrodes themselves which serve as both the primary ECG readout and the secondary subject-to-electrode distance readout. Finally, the experimental results show the secondary readout signal can be used to compensate the motion-related gain variations of the primary ECG monitoring circuit as well as the additive interference by motion events.","PeriodicalId":344317,"journal":{"name":"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Non-contact ECG employing signal compensation\",\"authors\":\"G. Peng, M. Bocko\",\"doi\":\"10.1109/BioCAS.2013.6679639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-contact ECG monitoring is an attractive option in a number of applications such as long-term health monitoring where traditional adhesive ECG sensors would cause skin irritation and require frequent replacement. Also, integrating ECG sensors into furniture, automobile seats and elsewhere in the environment will enable non-invasive sensing of cardiac signals. Subject-electrode relative motion causes spurious signals and significant signal distortion. The ECG signal of interest as well as static charge and electromagnetic interference are modulated by changes in the coupling capacitance between the electrodes and subject, which leads to significant distortions. The focus of this paper is the development of a non-contacting ECG sensing system including the electrodes, interface electronics and a signal-processing unit that work together to address this issue. The subject-to-electrode distance is continuously monitored by a secondary sensing circuit that uses the ECG electrodes themselves which serve as both the primary ECG readout and the secondary subject-to-electrode distance readout. Finally, the experimental results show the secondary readout signal can be used to compensate the motion-related gain variations of the primary ECG monitoring circuit as well as the additive interference by motion events.\",\"PeriodicalId\":344317,\"journal\":{\"name\":\"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BioCAS.2013.6679639\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BioCAS.2013.6679639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在许多应用中,非接触式ECG监测是一种有吸引力的选择,例如长期健康监测,传统的粘接式ECG传感器会引起皮肤刺激,需要经常更换。此外,将ECG传感器集成到家具、汽车座椅和环境中的其他地方,将使心脏信号的非侵入性感知成为可能。被测电极的相对运动会产生杂散信号和明显的信号失真。被测电极与被测对象之间耦合电容的变化会调制被测对象感兴趣的心电信号以及静电和电磁干扰,从而导致显著的畸变。本文的重点是开发一种非接触式心电传感系统,该系统包括电极、接口电子器件和信号处理单元,它们共同工作以解决这一问题。受试者与电极之间的距离由一个二级传感电路连续监测,该电路使用ECG电极本身作为主ECG读数和次级受试者与电极之间的距离读数。实验结果表明,二次读出信号可用于补偿主心电监测电路的运动相关增益变化以及运动事件的加性干扰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Non-contact ECG employing signal compensation
Non-contact ECG monitoring is an attractive option in a number of applications such as long-term health monitoring where traditional adhesive ECG sensors would cause skin irritation and require frequent replacement. Also, integrating ECG sensors into furniture, automobile seats and elsewhere in the environment will enable non-invasive sensing of cardiac signals. Subject-electrode relative motion causes spurious signals and significant signal distortion. The ECG signal of interest as well as static charge and electromagnetic interference are modulated by changes in the coupling capacitance between the electrodes and subject, which leads to significant distortions. The focus of this paper is the development of a non-contacting ECG sensing system including the electrodes, interface electronics and a signal-processing unit that work together to address this issue. The subject-to-electrode distance is continuously monitored by a secondary sensing circuit that uses the ECG electrodes themselves which serve as both the primary ECG readout and the secondary subject-to-electrode distance readout. Finally, the experimental results show the secondary readout signal can be used to compensate the motion-related gain variations of the primary ECG monitoring circuit as well as the additive interference by motion events.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-electrode amperometric biosensor for neurotransmitters detection A portable hardware implementation for temporal laser speckle imaging Automatic detection of sleep spindles using Teager energy and spectral edge frequency A 430nW 64nV/vHz current-reuse telescopic amplifier for neural recording applications Output stage of a current-steering multipolar and multisite deep brain stimulator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1