{"title":"通过探索非参数回归模型对三维医学图像进行参数回归","authors":"C. Seiler, X. Pennec, M. Reyes","doi":"10.1109/ISBI.2010.5490313","DOIUrl":null,"url":null,"abstract":"Currently there is an increase usage of CT-based bone diagnosis because low-radiation and cost-effective 2D imaging modalities do not provide the necessary 3D information for bone diagnosis. The fundamental objective of our work is to build a model connecting 2D X-ray information to 3D CT information through regression. As a first step we propose an univariate non-parametric regression on individual predictor variables to explore the non-linearity of the data. To later combine these univariate models we then replace them with parametric models. We examine two predictors, shaft length and caput collum diaphysis angle on a database of 182 CT images of femurs. We show that for each predictor it is possible to describe 99% of the variance through a simple up to second order parametric model. These findings will allow us to extend to the multivariate case in the future.","PeriodicalId":250523,"journal":{"name":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Parametric regression of 3D medical images through the exploration of non-parametric regression models\",\"authors\":\"C. Seiler, X. Pennec, M. Reyes\",\"doi\":\"10.1109/ISBI.2010.5490313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently there is an increase usage of CT-based bone diagnosis because low-radiation and cost-effective 2D imaging modalities do not provide the necessary 3D information for bone diagnosis. The fundamental objective of our work is to build a model connecting 2D X-ray information to 3D CT information through regression. As a first step we propose an univariate non-parametric regression on individual predictor variables to explore the non-linearity of the data. To later combine these univariate models we then replace them with parametric models. We examine two predictors, shaft length and caput collum diaphysis angle on a database of 182 CT images of femurs. We show that for each predictor it is possible to describe 99% of the variance through a simple up to second order parametric model. These findings will allow us to extend to the multivariate case in the future.\",\"PeriodicalId\":250523,\"journal\":{\"name\":\"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2010.5490313\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2010.5490313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Parametric regression of 3D medical images through the exploration of non-parametric regression models
Currently there is an increase usage of CT-based bone diagnosis because low-radiation and cost-effective 2D imaging modalities do not provide the necessary 3D information for bone diagnosis. The fundamental objective of our work is to build a model connecting 2D X-ray information to 3D CT information through regression. As a first step we propose an univariate non-parametric regression on individual predictor variables to explore the non-linearity of the data. To later combine these univariate models we then replace them with parametric models. We examine two predictors, shaft length and caput collum diaphysis angle on a database of 182 CT images of femurs. We show that for each predictor it is possible to describe 99% of the variance through a simple up to second order parametric model. These findings will allow us to extend to the multivariate case in the future.