利用伪边缘标签的不确定性改进伪装目标检测

Nobukatsu Kajiura, Hong Liu, S. Satoh
{"title":"利用伪边缘标签的不确定性改进伪装目标检测","authors":"Nobukatsu Kajiura, Hong Liu, S. Satoh","doi":"10.1145/3469877.3490587","DOIUrl":null,"url":null,"abstract":"This paper focuses on camouflaged object detection (COD), which is a task to detect objects hidden in the background. Most of the current COD models aim to highlight the target object directly while outputting ambiguous camouflaged boundaries. On the other hand, the performance of the models considering edge information is not yet satisfactory. To this end, we propose a new framework that makes full use of multiple visual cues, i.e., saliency as well as edges, to refine the predicted camouflaged map. This framework consists of three key components, i.e., a pseudo-edge generator, a pseudo-map generator, and an uncertainty-aware refinement module. In particular, the pseudo-edge generator estimates the boundary that outputs the pseudo-edge label, and the conventional COD method serves as the pseudo-map generator that outputs the pseudo-map label. Then, we propose an uncertainty-based module to reduce the uncertainty and noise of such two pseudo labels, which takes both pseudo labels as input and outputs an edge-accurate camouflaged map. Experiments on various COD datasets demonstrate the effectiveness of our method with superior performance to the existing state-of-the-art methods.","PeriodicalId":210974,"journal":{"name":"ACM Multimedia Asia","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Improving Camouflaged Object Detection with the Uncertainty of Pseudo-edge Labels\",\"authors\":\"Nobukatsu Kajiura, Hong Liu, S. Satoh\",\"doi\":\"10.1145/3469877.3490587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on camouflaged object detection (COD), which is a task to detect objects hidden in the background. Most of the current COD models aim to highlight the target object directly while outputting ambiguous camouflaged boundaries. On the other hand, the performance of the models considering edge information is not yet satisfactory. To this end, we propose a new framework that makes full use of multiple visual cues, i.e., saliency as well as edges, to refine the predicted camouflaged map. This framework consists of three key components, i.e., a pseudo-edge generator, a pseudo-map generator, and an uncertainty-aware refinement module. In particular, the pseudo-edge generator estimates the boundary that outputs the pseudo-edge label, and the conventional COD method serves as the pseudo-map generator that outputs the pseudo-map label. Then, we propose an uncertainty-based module to reduce the uncertainty and noise of such two pseudo labels, which takes both pseudo labels as input and outputs an edge-accurate camouflaged map. Experiments on various COD datasets demonstrate the effectiveness of our method with superior performance to the existing state-of-the-art methods.\",\"PeriodicalId\":210974,\"journal\":{\"name\":\"ACM Multimedia Asia\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Multimedia Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3469877.3490587\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Multimedia Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3469877.3490587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

本文主要研究伪装目标检测(COD),即检测隐藏在背景中的目标。目前大多数COD模型的目标是直接突出显示目标物体,同时输出模糊的伪装边界。另一方面,考虑边缘信息的模型的性能还不能令人满意。为此,我们提出了一个新的框架,充分利用多种视觉线索,即显著性和边缘,来完善预测的伪装地图。该框架由三个关键组件组成,即伪边缘生成器、伪映射生成器和不确定性感知细化模块。其中,伪边缘生成器估计输出伪边缘标签的边界,传统的COD方法作为输出伪地图标签的伪地图生成器。然后,我们提出了一个基于不确定性的模块来降低这两种伪标签的不确定性和噪声,该模块将这两种伪标签作为输入,输出一个边缘精确的伪装地图。在各种COD数据集上的实验证明了该方法的有效性,其性能优于现有的最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving Camouflaged Object Detection with the Uncertainty of Pseudo-edge Labels
This paper focuses on camouflaged object detection (COD), which is a task to detect objects hidden in the background. Most of the current COD models aim to highlight the target object directly while outputting ambiguous camouflaged boundaries. On the other hand, the performance of the models considering edge information is not yet satisfactory. To this end, we propose a new framework that makes full use of multiple visual cues, i.e., saliency as well as edges, to refine the predicted camouflaged map. This framework consists of three key components, i.e., a pseudo-edge generator, a pseudo-map generator, and an uncertainty-aware refinement module. In particular, the pseudo-edge generator estimates the boundary that outputs the pseudo-edge label, and the conventional COD method serves as the pseudo-map generator that outputs the pseudo-map label. Then, we propose an uncertainty-based module to reduce the uncertainty and noise of such two pseudo labels, which takes both pseudo labels as input and outputs an edge-accurate camouflaged map. Experiments on various COD datasets demonstrate the effectiveness of our method with superior performance to the existing state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Scale Graph Convolutional Network and Dynamic Iterative Class Loss for Ship Segmentation in Remote Sensing Images Structural Knowledge Organization and Transfer for Class-Incremental Learning Hard-Boundary Attention Network for Nuclei Instance Segmentation Score Transformer: Generating Musical Score from Note-level Representation CMRD-Net: An Improved Method for Underwater Image Enhancement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1