用于架构级集成电路设计的快速热模拟器

A. Ziabari, E. K. Ardestani, Jose Renau, A. Shakouri
{"title":"用于架构级集成电路设计的快速热模拟器","authors":"A. Ziabari, E. K. Ardestani, Jose Renau, A. Shakouri","doi":"10.1109/STHERM.2011.5767180","DOIUrl":null,"url":null,"abstract":"High temperatures and non-uniform temperature distributions have become a serious concern since they limit both performance and reliability of Integrated Circuits (IC). With computer architect's concern to position microarchitecture blocks in a processor, faster thermal models can be developed at the cost of hiding finer grain details such as circuit or transistor level information. Several methods to quickly estimate the surface temperature profiles of microarchitecture blocks have been investigated in recent years. HotSpot simulator is widely used in computer architecture community. SESCTherm is another architecture level thermal simulator which has shown good performance and modularity in modeling. Recently Power Blurring (PB) method has been developed for both steady-state and transient thermal analysis of standard and 3D chips. While some of these methods are validated against finite element and Green's function based techniques, there are no detailed comparisons of the accuracy and speed for some common applications. In this paper we present the steady-state and transient temperature distributions calculated by these three architecture level thermal simulators. A detailed comparison taking into account the accuracy and the computation speed is performed. Our results indicate that Power Blurring has the potential to be a promising architecture level thermal simulator for fast calculation of temperature profile from the input power map in a realistic package which, in turn, is a key ingredient for full self-consistent simulations.","PeriodicalId":128077,"journal":{"name":"2011 27th Annual IEEE Semiconductor Thermal Measurement and Management Symposium","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Fast thermal simulators for architecture level integrated circuit design\",\"authors\":\"A. Ziabari, E. K. Ardestani, Jose Renau, A. Shakouri\",\"doi\":\"10.1109/STHERM.2011.5767180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High temperatures and non-uniform temperature distributions have become a serious concern since they limit both performance and reliability of Integrated Circuits (IC). With computer architect's concern to position microarchitecture blocks in a processor, faster thermal models can be developed at the cost of hiding finer grain details such as circuit or transistor level information. Several methods to quickly estimate the surface temperature profiles of microarchitecture blocks have been investigated in recent years. HotSpot simulator is widely used in computer architecture community. SESCTherm is another architecture level thermal simulator which has shown good performance and modularity in modeling. Recently Power Blurring (PB) method has been developed for both steady-state and transient thermal analysis of standard and 3D chips. While some of these methods are validated against finite element and Green's function based techniques, there are no detailed comparisons of the accuracy and speed for some common applications. In this paper we present the steady-state and transient temperature distributions calculated by these three architecture level thermal simulators. A detailed comparison taking into account the accuracy and the computation speed is performed. Our results indicate that Power Blurring has the potential to be a promising architecture level thermal simulator for fast calculation of temperature profile from the input power map in a realistic package which, in turn, is a key ingredient for full self-consistent simulations.\",\"PeriodicalId\":128077,\"journal\":{\"name\":\"2011 27th Annual IEEE Semiconductor Thermal Measurement and Management Symposium\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 27th Annual IEEE Semiconductor Thermal Measurement and Management Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/STHERM.2011.5767180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 27th Annual IEEE Semiconductor Thermal Measurement and Management Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STHERM.2011.5767180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

高温和不均匀温度分布已经成为一个严重的问题,因为它们限制了集成电路(IC)的性能和可靠性。由于计算机架构师关注处理器中微架构块的位置,因此可以开发更快的热模型,但代价是隐藏更精细的细节,如电路或晶体管级信息。近年来,人们研究了几种快速估计微结构块体表面温度分布的方法。热点模拟器在计算机体系结构界得到了广泛的应用。SESCTherm是另一个架构级热模拟器,在建模方面表现出良好的性能和模块化。近年来,功率模糊(PB)方法被应用于标准芯片和三维芯片的稳态和瞬态热分析。虽然其中一些方法经过了有限元和基于格林函数的技术的验证,但对于一些常见应用,没有详细的精度和速度比较。本文给出了这三种结构级热模拟器计算的稳态和瞬态温度分布。考虑到精度和计算速度,进行了详细的比较。我们的研究结果表明,功率模糊有潜力成为一个有前途的架构级热模拟器,可以从现实封装的输入功率图中快速计算温度分布,这反过来又是完全自一致模拟的关键因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast thermal simulators for architecture level integrated circuit design
High temperatures and non-uniform temperature distributions have become a serious concern since they limit both performance and reliability of Integrated Circuits (IC). With computer architect's concern to position microarchitecture blocks in a processor, faster thermal models can be developed at the cost of hiding finer grain details such as circuit or transistor level information. Several methods to quickly estimate the surface temperature profiles of microarchitecture blocks have been investigated in recent years. HotSpot simulator is widely used in computer architecture community. SESCTherm is another architecture level thermal simulator which has shown good performance and modularity in modeling. Recently Power Blurring (PB) method has been developed for both steady-state and transient thermal analysis of standard and 3D chips. While some of these methods are validated against finite element and Green's function based techniques, there are no detailed comparisons of the accuracy and speed for some common applications. In this paper we present the steady-state and transient temperature distributions calculated by these three architecture level thermal simulators. A detailed comparison taking into account the accuracy and the computation speed is performed. Our results indicate that Power Blurring has the potential to be a promising architecture level thermal simulator for fast calculation of temperature profile from the input power map in a realistic package which, in turn, is a key ingredient for full self-consistent simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data center design using improved CFD modeling and cost reduction analysis Data center efficiency with higher ambient temperatures and optimized cooling control Effect of server load variation on rack air flow distribution in a raised floor data center Thermal design in the Design for Six Sigma — DIDOV framework ASIC package lid effects on temperature and lifetime
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1