Min Wang, Guangfeng Kan, Cuijuan Shi, Qiuju Xie, Yingying Huang, Zhenhuan Lei
{"title":"Cu2+对南极菌株O5重金属耐受性及抗氧化酶活性的影响","authors":"Min Wang, Guangfeng Kan, Cuijuan Shi, Qiuju Xie, Yingying Huang, Zhenhuan Lei","doi":"10.1109/ISB.2011.6033169","DOIUrl":null,"url":null,"abstract":"Under the heavy metal polluted circumstances, microorganisms certainly have some changes in terms of species, quantity, community structure and diversity to adapt the environments. Now, many heavy metal tolerant microbe groups have been studied. In the study, a heavy metal tolerant and psychrophilic bacterium strain from Antarctica was screened. Based on 16S rDNA sequence analysis, this strain belongs to Planococcus, named as Planococcus sp. O5. The capacity of antimetal of Planococcus sp. O5 is Pb2+ > Cu2+ > Hg2+ > Cd2+ > Zn2+, and the MICs is 320 mg/L, 130 mg/L, 80 mg/L, 80 mg/L and 40 mg/L, respectively. Lipid peroxidation (indicated by malonydialdehyde content) happened in strain O5 induced with Cu2+. At the same time, the antioxidation enzyme activity (such as SOD, POD and CAT) had stimulus-controlled improvement, which is a certain protection against heavy metals. Therefore, as an important feature adapting the stress environments, the activity of antimetal, can reflect the adaptive strategy of microorganism to some extent. This paper studied the activity of antimetal and antioxidation of a bacterial strain, which can help us better understand the bacteria how to adapt the extreme environments.","PeriodicalId":355056,"journal":{"name":"2011 IEEE International Conference on Systems Biology (ISB)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Heavy metal tolerance of an antarctic bacterial Strain O5 and its antioxidant enzyme activity changes induced by Cu2+\",\"authors\":\"Min Wang, Guangfeng Kan, Cuijuan Shi, Qiuju Xie, Yingying Huang, Zhenhuan Lei\",\"doi\":\"10.1109/ISB.2011.6033169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Under the heavy metal polluted circumstances, microorganisms certainly have some changes in terms of species, quantity, community structure and diversity to adapt the environments. Now, many heavy metal tolerant microbe groups have been studied. In the study, a heavy metal tolerant and psychrophilic bacterium strain from Antarctica was screened. Based on 16S rDNA sequence analysis, this strain belongs to Planococcus, named as Planococcus sp. O5. The capacity of antimetal of Planococcus sp. O5 is Pb2+ > Cu2+ > Hg2+ > Cd2+ > Zn2+, and the MICs is 320 mg/L, 130 mg/L, 80 mg/L, 80 mg/L and 40 mg/L, respectively. Lipid peroxidation (indicated by malonydialdehyde content) happened in strain O5 induced with Cu2+. At the same time, the antioxidation enzyme activity (such as SOD, POD and CAT) had stimulus-controlled improvement, which is a certain protection against heavy metals. Therefore, as an important feature adapting the stress environments, the activity of antimetal, can reflect the adaptive strategy of microorganism to some extent. This paper studied the activity of antimetal and antioxidation of a bacterial strain, which can help us better understand the bacteria how to adapt the extreme environments.\",\"PeriodicalId\":355056,\"journal\":{\"name\":\"2011 IEEE International Conference on Systems Biology (ISB)\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Systems Biology (ISB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISB.2011.6033169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Systems Biology (ISB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISB.2011.6033169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Heavy metal tolerance of an antarctic bacterial Strain O5 and its antioxidant enzyme activity changes induced by Cu2+
Under the heavy metal polluted circumstances, microorganisms certainly have some changes in terms of species, quantity, community structure and diversity to adapt the environments. Now, many heavy metal tolerant microbe groups have been studied. In the study, a heavy metal tolerant and psychrophilic bacterium strain from Antarctica was screened. Based on 16S rDNA sequence analysis, this strain belongs to Planococcus, named as Planococcus sp. O5. The capacity of antimetal of Planococcus sp. O5 is Pb2+ > Cu2+ > Hg2+ > Cd2+ > Zn2+, and the MICs is 320 mg/L, 130 mg/L, 80 mg/L, 80 mg/L and 40 mg/L, respectively. Lipid peroxidation (indicated by malonydialdehyde content) happened in strain O5 induced with Cu2+. At the same time, the antioxidation enzyme activity (such as SOD, POD and CAT) had stimulus-controlled improvement, which is a certain protection against heavy metals. Therefore, as an important feature adapting the stress environments, the activity of antimetal, can reflect the adaptive strategy of microorganism to some extent. This paper studied the activity of antimetal and antioxidation of a bacterial strain, which can help us better understand the bacteria how to adapt the extreme environments.