Jasmine:探索分布式共享内存上的依赖感知执行

Xing Wei, Huiqi Hu, Xuan Zhou, Xuecheng Qi, Weining Qian, Jiang Wang, Aoying Zhou
{"title":"Jasmine:探索分布式共享内存上的依赖感知执行","authors":"Xing Wei, Huiqi Hu, Xuan Zhou, Xuecheng Qi, Weining Qian, Jiang Wang, Aoying Zhou","doi":"10.1145/3459637.3481993","DOIUrl":null,"url":null,"abstract":"Distributed shared memory abstraction can coordinate a cluster of machine nodes to empower performance-critical queries with the scalable memory space and abundant parallelism. But to deploy the query under such an abstraction, the general execution model just makes operators expressed as multiple subtasks and sequentially schedule them in parallel, while neglecting those vital dependencies between subtasks and data. In this paper, we conduct the in-depth researches about the issues (i.e., low CPU Utilization and poor data locality) raised by the ignorance of dependencies, and then propose a dependency-aware query execution model called Jasmine, which can (i) help users explicitly declare the dependencies and (ii) take these declared dependencies into the consideration of execution to address the issues. We invite our audience to use the rich graphical interfaces to interact with Jasmine to explore the dependency-aware query execution on distributed shared memory.","PeriodicalId":405296,"journal":{"name":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Jasmine: Exploring the Dependency-Aware Execution on Distributed Shared Memory\",\"authors\":\"Xing Wei, Huiqi Hu, Xuan Zhou, Xuecheng Qi, Weining Qian, Jiang Wang, Aoying Zhou\",\"doi\":\"10.1145/3459637.3481993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distributed shared memory abstraction can coordinate a cluster of machine nodes to empower performance-critical queries with the scalable memory space and abundant parallelism. But to deploy the query under such an abstraction, the general execution model just makes operators expressed as multiple subtasks and sequentially schedule them in parallel, while neglecting those vital dependencies between subtasks and data. In this paper, we conduct the in-depth researches about the issues (i.e., low CPU Utilization and poor data locality) raised by the ignorance of dependencies, and then propose a dependency-aware query execution model called Jasmine, which can (i) help users explicitly declare the dependencies and (ii) take these declared dependencies into the consideration of execution to address the issues. We invite our audience to use the rich graphical interfaces to interact with Jasmine to explore the dependency-aware query execution on distributed shared memory.\",\"PeriodicalId\":405296,\"journal\":{\"name\":\"Proceedings of the 30th ACM International Conference on Information & Knowledge Management\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 30th ACM International Conference on Information & Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3459637.3481993\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3459637.3481993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分布式共享内存抽象可以协调机器节点集群,从而通过可扩展的内存空间和丰富的并行性来支持性能关键型查询。但是,为了在这种抽象下部署查询,一般的执行模型只是将操作符表示为多个子任务,并按顺序并行调度它们,而忽略了子任务和数据之间的重要依赖关系。本文深入研究了由于忽略依赖关系而导致的CPU利用率低、数据局地性差等问题,并提出了一种依赖感知的查询执行模型Jasmine,该模型可以(i)帮助用户显式地声明依赖关系,(ii)在执行时考虑这些声明的依赖关系来解决问题。我们邀请读者使用丰富的图形界面与Jasmine交互,探索分布式共享内存上的依赖关系感知查询执行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Jasmine: Exploring the Dependency-Aware Execution on Distributed Shared Memory
Distributed shared memory abstraction can coordinate a cluster of machine nodes to empower performance-critical queries with the scalable memory space and abundant parallelism. But to deploy the query under such an abstraction, the general execution model just makes operators expressed as multiple subtasks and sequentially schedule them in parallel, while neglecting those vital dependencies between subtasks and data. In this paper, we conduct the in-depth researches about the issues (i.e., low CPU Utilization and poor data locality) raised by the ignorance of dependencies, and then propose a dependency-aware query execution model called Jasmine, which can (i) help users explicitly declare the dependencies and (ii) take these declared dependencies into the consideration of execution to address the issues. We invite our audience to use the rich graphical interfaces to interact with Jasmine to explore the dependency-aware query execution on distributed shared memory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
UltraGCN Fine and Coarse Granular Argument Classification before Clustering CHASE Crawler Detection in Location-Based Services Using Attributed Action Net Failure Prediction for Large-scale Water Pipe Networks Using GNN and Temporal Failure Series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1