利用贝叶斯非负矩阵分解识别分离皮质培养中不同的同步模式

Yuichiro Yada, Takeshi Mita, R. Kanzaki, D. Bakkum, Hirokazu Takahashi
{"title":"利用贝叶斯非负矩阵分解识别分离皮质培养中不同的同步模式","authors":"Yuichiro Yada, Takeshi Mita, R. Kanzaki, D. Bakkum, Hirokazu Takahashi","doi":"10.1109/NER.2015.7146630","DOIUrl":null,"url":null,"abstract":"Synchrony in a neuronal network is not just a spontaneous event but rather a representation of inner information. In this point of view, the variety of synchrony patterns is considered to be related to inner capacity of the network. However, evaluating and comparing the variety of synchrony patterns, especially between different samples or different times, is difficult. In this paper, we proposed to identify the variety of synchrony based on Bayesian model selection. Hypothesizing that globally synchronized activity consists of partial synchrony, we attempted to identify reproducible-spatial pattern bases in spontaneous bursting activities of dissociated cortical cultures using Bayesian non-negative matrix factorization. Neuronal activity was recorded with high-density CMOS electrode arrays. Bayesian treatment provides evidence for selection of the number of bases based on marginal likelihood. We compared model evidence of the activity in juvenile and matured cultures. Our results suggested that the variety of synchrony patterns diversify through maturation.","PeriodicalId":137451,"journal":{"name":"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of diverse synchrony patterns in dissociated cortical culture using Bayesian non-negative matrix factorization\",\"authors\":\"Yuichiro Yada, Takeshi Mita, R. Kanzaki, D. Bakkum, Hirokazu Takahashi\",\"doi\":\"10.1109/NER.2015.7146630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synchrony in a neuronal network is not just a spontaneous event but rather a representation of inner information. In this point of view, the variety of synchrony patterns is considered to be related to inner capacity of the network. However, evaluating and comparing the variety of synchrony patterns, especially between different samples or different times, is difficult. In this paper, we proposed to identify the variety of synchrony based on Bayesian model selection. Hypothesizing that globally synchronized activity consists of partial synchrony, we attempted to identify reproducible-spatial pattern bases in spontaneous bursting activities of dissociated cortical cultures using Bayesian non-negative matrix factorization. Neuronal activity was recorded with high-density CMOS electrode arrays. Bayesian treatment provides evidence for selection of the number of bases based on marginal likelihood. We compared model evidence of the activity in juvenile and matured cultures. Our results suggested that the variety of synchrony patterns diversify through maturation.\",\"PeriodicalId\":137451,\"journal\":{\"name\":\"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NER.2015.7146630\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NER.2015.7146630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

神经元网络中的同步性不仅仅是自发的事件,而是内部信息的一种表现。从这个角度来看,同步模式的多样性被认为与网络的内部容量有关。然而,评估和比较各种同步模式,特别是在不同的样本或不同的时间,是困难的。在本文中,我们提出了基于贝叶斯模型选择的同步变化识别方法。假设全局同步活动由部分同步组成,我们尝试使用贝叶斯非负矩阵分解来识别游离皮质培养物自发爆发活动的可复制空间模式基础。用高密度CMOS电极阵列记录神经元活动。贝叶斯处理为基于边际似然的基数选择提供了依据。我们比较了青少年和成熟文化中活动的模型证据。我们的研究结果表明,同步模式的多样性随着成熟而多样化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identification of diverse synchrony patterns in dissociated cortical culture using Bayesian non-negative matrix factorization
Synchrony in a neuronal network is not just a spontaneous event but rather a representation of inner information. In this point of view, the variety of synchrony patterns is considered to be related to inner capacity of the network. However, evaluating and comparing the variety of synchrony patterns, especially between different samples or different times, is difficult. In this paper, we proposed to identify the variety of synchrony based on Bayesian model selection. Hypothesizing that globally synchronized activity consists of partial synchrony, we attempted to identify reproducible-spatial pattern bases in spontaneous bursting activities of dissociated cortical cultures using Bayesian non-negative matrix factorization. Neuronal activity was recorded with high-density CMOS electrode arrays. Bayesian treatment provides evidence for selection of the number of bases based on marginal likelihood. We compared model evidence of the activity in juvenile and matured cultures. Our results suggested that the variety of synchrony patterns diversify through maturation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
iNODE in-vivo testing for selective vagus nerve recording and stimulation Computational studies on urinary bladder smooth muscle: Modeling ion channels and their role in generating electrical activity Fast calibration of a thirteen-command BCI by simulating SSVEPs from trains of transient VEPs - towards time-domain SSVEP BCI paradigms A hybrid NMES-exoskeleton for real objects interaction Computationally efficient, configurable, causal, real-time phase detection applied to local field potential oscillations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1