高度分布系统中秩连接的处理

C. Doulkeridis, Akrivi Vlachou, K. Nørvåg, Y. Kotidis, N. Polyzotis
{"title":"高度分布系统中秩连接的处理","authors":"C. Doulkeridis, Akrivi Vlachou, K. Nørvåg, Y. Kotidis, N. Polyzotis","doi":"10.1109/ICDE.2012.108","DOIUrl":null,"url":null,"abstract":"In this paper, we study efficient processing of rank joins in highly distributed systems, where servers store fragments of relations in an autonomous manner. Existing rank-join algorithms exhibit poor performance in this setting due to excessive communication costs or high latency. We propose a novel distributed rank-join framework that employs data statistics, maintained as histograms, to determine the subset of each relational fragment that needs to be fetched to generate the top-k join results. At the heart of our framework lies a distributed score bound estimation algorithm that produces sufficient score bounds for each relation, that guarantee the correctness of the rank-join result set, when the histograms are accurate. Furthermore, we propose a generalization of our framework that supports approximate statistics, in the case that the exact statistical information is not available. An extensive experimental study validates the efficiency of our framework and demonstrates its advantages over existing methods.","PeriodicalId":321608,"journal":{"name":"2012 IEEE 28th International Conference on Data Engineering","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Processing of Rank Joins in Highly Distributed Systems\",\"authors\":\"C. Doulkeridis, Akrivi Vlachou, K. Nørvåg, Y. Kotidis, N. Polyzotis\",\"doi\":\"10.1109/ICDE.2012.108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study efficient processing of rank joins in highly distributed systems, where servers store fragments of relations in an autonomous manner. Existing rank-join algorithms exhibit poor performance in this setting due to excessive communication costs or high latency. We propose a novel distributed rank-join framework that employs data statistics, maintained as histograms, to determine the subset of each relational fragment that needs to be fetched to generate the top-k join results. At the heart of our framework lies a distributed score bound estimation algorithm that produces sufficient score bounds for each relation, that guarantee the correctness of the rank-join result set, when the histograms are accurate. Furthermore, we propose a generalization of our framework that supports approximate statistics, in the case that the exact statistical information is not available. An extensive experimental study validates the efficiency of our framework and demonstrates its advantages over existing methods.\",\"PeriodicalId\":321608,\"journal\":{\"name\":\"2012 IEEE 28th International Conference on Data Engineering\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 28th International Conference on Data Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2012.108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 28th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2012.108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

在本文中,我们研究了高度分布式系统中秩连接的有效处理,其中服务器以自治的方式存储关系片段。由于通信成本过高或延迟高,现有的秩联接算法在这种情况下表现出较差的性能。我们提出了一种新的分布式排名连接框架,该框架使用数据统计(以直方图的形式维护)来确定需要提取的每个关系片段的子集,以生成top-k连接结果。我们框架的核心是一个分布式分数界估计算法,该算法为每个关系产生足够的分数界,当直方图准确时,它保证了排名连接结果集的正确性。此外,我们提出了一个支持近似统计的框架的泛化,在没有确切统计信息的情况下。广泛的实验研究验证了我们的框架的效率,并证明了它比现有方法的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Processing of Rank Joins in Highly Distributed Systems
In this paper, we study efficient processing of rank joins in highly distributed systems, where servers store fragments of relations in an autonomous manner. Existing rank-join algorithms exhibit poor performance in this setting due to excessive communication costs or high latency. We propose a novel distributed rank-join framework that employs data statistics, maintained as histograms, to determine the subset of each relational fragment that needs to be fetched to generate the top-k join results. At the heart of our framework lies a distributed score bound estimation algorithm that produces sufficient score bounds for each relation, that guarantee the correctness of the rank-join result set, when the histograms are accurate. Furthermore, we propose a generalization of our framework that supports approximate statistics, in the case that the exact statistical information is not available. An extensive experimental study validates the efficiency of our framework and demonstrates its advantages over existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Keyword Query Reformulation on Structured Data Accuracy-Aware Uncertain Stream Databases Extracting Analyzing and Visualizing Triangle K-Core Motifs within Networks Project Daytona: Data Analytics as a Cloud Service Automatic Extraction of Structured Web Data with Domain Knowledge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1