{"title":"用于流体控制应用的平面内微执行器","authors":"F. Sherman, S. Tung, C. Kim, Chih-Ming Ho, J. Woo","doi":"10.1109/MEMSYS.1998.659800","DOIUrl":null,"url":null,"abstract":"We introduce a new approach that alters the local flow condition using electrostatically driven microactuator moving in the in-plane direction such that form drag of the actuator can be eliminated. This is in contrast to the electromagnetically driven microflap moving normal to the substrate. A 60 /spl mu/m/spl times/200 /spl mu/m plate moving parallel to the substrate surface induces a \"spanwise velocity\" into the flow field. This spanwise velocity, when applied to the near-wall streaks, increases the transport of high-speed fluid away from the wall, therefore causing reduction in viscous drag. The microplate is attached at the end of a microcantilever capable of, even in non-resonance, large tip deflection (>100 /spl mu/m), tested at the operation frequencies of 500-1200 Hz. The cantilever is of a high-aspect-ratio structure (2 /spl mu/m wide, 6-17 /spl mu/m thick silicon) to ensure parallel motion over a long distance and provide robustness against out-of-plane deflection under external disturbances from the flow. We report the design and one-mask fabrication of the in-plane microactuator array made from Silicon-On-Insulator (SOI) wafers and experimental verification of the induced Stoke's flow and a local fluid flow.","PeriodicalId":340972,"journal":{"name":"Proceedings MEMS 98. IEEE. Eleventh Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems (Cat. No.98CH36176","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"In-plane microactuator for fluid control application\",\"authors\":\"F. Sherman, S. Tung, C. Kim, Chih-Ming Ho, J. Woo\",\"doi\":\"10.1109/MEMSYS.1998.659800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a new approach that alters the local flow condition using electrostatically driven microactuator moving in the in-plane direction such that form drag of the actuator can be eliminated. This is in contrast to the electromagnetically driven microflap moving normal to the substrate. A 60 /spl mu/m/spl times/200 /spl mu/m plate moving parallel to the substrate surface induces a \\\"spanwise velocity\\\" into the flow field. This spanwise velocity, when applied to the near-wall streaks, increases the transport of high-speed fluid away from the wall, therefore causing reduction in viscous drag. The microplate is attached at the end of a microcantilever capable of, even in non-resonance, large tip deflection (>100 /spl mu/m), tested at the operation frequencies of 500-1200 Hz. The cantilever is of a high-aspect-ratio structure (2 /spl mu/m wide, 6-17 /spl mu/m thick silicon) to ensure parallel motion over a long distance and provide robustness against out-of-plane deflection under external disturbances from the flow. We report the design and one-mask fabrication of the in-plane microactuator array made from Silicon-On-Insulator (SOI) wafers and experimental verification of the induced Stoke's flow and a local fluid flow.\",\"PeriodicalId\":340972,\"journal\":{\"name\":\"Proceedings MEMS 98. IEEE. Eleventh Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems (Cat. No.98CH36176\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings MEMS 98. IEEE. Eleventh Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems (Cat. No.98CH36176\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.1998.659800\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings MEMS 98. IEEE. Eleventh Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems (Cat. No.98CH36176","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.1998.659800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文提出了一种利用静电驱动微动器在平面内运动来改变局部流动状态的新方法,从而消除了微动器的阻力。这与电磁驱动的微瓣垂直于衬底运动形成对比。一个60 /spl mu/m/spl乘以/200 /spl mu/m的平板平行于基材表面运动,在流场中产生一个“展向速度”。当应用于近壁面条纹时,这种展向速度增加了高速流体离开壁面的输送,从而减少了粘性阻力。在500- 1200hz的工作频率下,微悬臂梁的末端连接微板,即使在非共振情况下,也能产生较大的尖端挠度(>100 /声压μ l /m)。悬臂采用高纵横比结构(2 /spl mu/m宽,6-17 /spl mu/m厚的硅),以确保长距离的平行运动,并提供坚固性,防止在外部气流干扰下的面外偏转。本文报道了由绝缘体上硅(SOI)晶圆制成的平面内微致动器阵列的设计和单掩模制作,以及诱导斯托克流和局部流体流动的实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In-plane microactuator for fluid control application
We introduce a new approach that alters the local flow condition using electrostatically driven microactuator moving in the in-plane direction such that form drag of the actuator can be eliminated. This is in contrast to the electromagnetically driven microflap moving normal to the substrate. A 60 /spl mu/m/spl times/200 /spl mu/m plate moving parallel to the substrate surface induces a "spanwise velocity" into the flow field. This spanwise velocity, when applied to the near-wall streaks, increases the transport of high-speed fluid away from the wall, therefore causing reduction in viscous drag. The microplate is attached at the end of a microcantilever capable of, even in non-resonance, large tip deflection (>100 /spl mu/m), tested at the operation frequencies of 500-1200 Hz. The cantilever is of a high-aspect-ratio structure (2 /spl mu/m wide, 6-17 /spl mu/m thick silicon) to ensure parallel motion over a long distance and provide robustness against out-of-plane deflection under external disturbances from the flow. We report the design and one-mask fabrication of the in-plane microactuator array made from Silicon-On-Insulator (SOI) wafers and experimental verification of the induced Stoke's flow and a local fluid flow.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Micro force sensor for intravascular neurosurgery and in vivo experiment Laser display technology A silicon IR-source and CO/sub 2/-chamber for CO/sub 2/ measurements Design and fabrication of a novel integrated floating-electrode-"electret"-microphone (FFEM) Microfabrication and parallel operation of 5/spl times/5 2D AFM cantilever arrays for data storage and imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1