计算密集型和噪声任务:双陆棋的协同进化学习和时间差异学习

P. Darwen
{"title":"计算密集型和噪声任务:双陆棋的协同进化学习和时间差异学习","authors":"P. Darwen","doi":"10.1109/CEC.2000.870731","DOIUrl":null,"url":null,"abstract":"The most difficult but realistic learning tasks are both noisy and computationally intensive. This paper investigates how, for a given solution representation, co-evolutionary learning can achieve the highest ability from the least computation time. Using a population of Backgammon strategies, this paper examines ways to make computational costs reasonable. With the same simple architecture Gerald Tasauro used for temporal difference learning to create the Backgammon strategy \"Pubeval\", co-evolutionary learning here creates a better player.","PeriodicalId":218136,"journal":{"name":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Computationally intensive and noisy tasks: co-evolutionary learning and temporal difference learning on Backgammon\",\"authors\":\"P. Darwen\",\"doi\":\"10.1109/CEC.2000.870731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The most difficult but realistic learning tasks are both noisy and computationally intensive. This paper investigates how, for a given solution representation, co-evolutionary learning can achieve the highest ability from the least computation time. Using a population of Backgammon strategies, this paper examines ways to make computational costs reasonable. With the same simple architecture Gerald Tasauro used for temporal difference learning to create the Backgammon strategy \\\"Pubeval\\\", co-evolutionary learning here creates a better player.\",\"PeriodicalId\":218136,\"journal\":{\"name\":\"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2000.870731\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2000.870731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

最困难但最现实的学习任务是嘈杂和计算密集的。本文研究了在给定的解表示下,协同进化学习如何以最少的计算时间获得最高的能力。利用一组双陆棋策略,本文探讨了使计算成本合理的方法。与Gerald Tasauro用于时间差异学习创造Backgammon策略“Pubeval”的简单架构相同,共同进化学习在这里创造了一个更优秀的玩家。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computationally intensive and noisy tasks: co-evolutionary learning and temporal difference learning on Backgammon
The most difficult but realistic learning tasks are both noisy and computationally intensive. This paper investigates how, for a given solution representation, co-evolutionary learning can achieve the highest ability from the least computation time. Using a population of Backgammon strategies, this paper examines ways to make computational costs reasonable. With the same simple architecture Gerald Tasauro used for temporal difference learning to create the Backgammon strategy "Pubeval", co-evolutionary learning here creates a better player.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Test-case generator TCG-2 for nonlinear parameter optimisation Accelerating multi-objective control system design using a neuro-genetic approach On the use of stochastic estimator learning automata for dynamic channel allocation in broadcast networks A hierarchical distributed genetic algorithm for image segmentation Genetic learning of multi-attribute interactions in speaker verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1