在FPGA上使用连续隐马尔可夫模型对多个并行文件进行语音识别

S. Melnikoff, S. Quigley, M. Russell
{"title":"在FPGA上使用连续隐马尔可夫模型对多个并行文件进行语音识别","authors":"S. Melnikoff, S. Quigley, M. Russell","doi":"10.1109/FPT.2002.1188720","DOIUrl":null,"url":null,"abstract":"Speech recognition is a computationally demanding task, particularly the stages which use Viterbi decoding for converting pre-processed speech data into words or subword unit, and the associated observation probability calculations, which employ multivariate Gaussian distributions; so any device that can reduce the load on, for example, a PC's processor, is advantageous. Hence we present two implementations of a speech recognition system incorporating an FPGA, employing continuous hidden Markov models (HMMs), and capable of processing three speech files simultaneously. The first uses monophones, and can perform recognition 250 times real time (in terms of average time per observation), as well as outperforming its software equivalent. The second uses biphones and triphones, reducing the speedup to 13 times real time.","PeriodicalId":355740,"journal":{"name":"2002 IEEE International Conference on Field-Programmable Technology, 2002. (FPT). Proceedings.","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Performing speech recognition on multiple parallel files using continuous hidden Markov models on an FPGA\",\"authors\":\"S. Melnikoff, S. Quigley, M. Russell\",\"doi\":\"10.1109/FPT.2002.1188720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Speech recognition is a computationally demanding task, particularly the stages which use Viterbi decoding for converting pre-processed speech data into words or subword unit, and the associated observation probability calculations, which employ multivariate Gaussian distributions; so any device that can reduce the load on, for example, a PC's processor, is advantageous. Hence we present two implementations of a speech recognition system incorporating an FPGA, employing continuous hidden Markov models (HMMs), and capable of processing three speech files simultaneously. The first uses monophones, and can perform recognition 250 times real time (in terms of average time per observation), as well as outperforming its software equivalent. The second uses biphones and triphones, reducing the speedup to 13 times real time.\",\"PeriodicalId\":355740,\"journal\":{\"name\":\"2002 IEEE International Conference on Field-Programmable Technology, 2002. (FPT). Proceedings.\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2002 IEEE International Conference on Field-Programmable Technology, 2002. (FPT). Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FPT.2002.1188720\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 IEEE International Conference on Field-Programmable Technology, 2002. (FPT). Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPT.2002.1188720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

语音识别是一项计算要求很高的任务,特别是使用维特比解码将预处理语音数据转换为词或子词单位的阶段,以及使用多元高斯分布的相关观察概率计算;因此,任何可以减轻负荷的设备,例如PC的处理器,都是有利的。因此,我们提出了两种结合FPGA的语音识别系统的实现,采用连续隐马尔可夫模型(hmm),能够同时处理三个语音文件。第一种使用单声道,可以实时执行250次识别(按每次观察的平均时间计算),并且优于其同类软件。第二种使用双声道和三声道,将速度降低到实时的13倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performing speech recognition on multiple parallel files using continuous hidden Markov models on an FPGA
Speech recognition is a computationally demanding task, particularly the stages which use Viterbi decoding for converting pre-processed speech data into words or subword unit, and the associated observation probability calculations, which employ multivariate Gaussian distributions; so any device that can reduce the load on, for example, a PC's processor, is advantageous. Hence we present two implementations of a speech recognition system incorporating an FPGA, employing continuous hidden Markov models (HMMs), and capable of processing three speech files simultaneously. The first uses monophones, and can perform recognition 250 times real time (in terms of average time per observation), as well as outperforming its software equivalent. The second uses biphones and triphones, reducing the speedup to 13 times real time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolution-based automated reconfiguration of field programmable analog devices Clustered programmable-reconfigurable processors Design and implementation of a novel architecture for symmetric FIR filters with boundary handling on Xilinx Virtex FPGAs Serial-parallel tradeoff analysis of all-pairs shortest path algorithms in reconfigurable computing A co-simulation study of adaptive EPIC computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1