{"title":"IEEE 802.11B协议的错误恢复服务","authors":"M. Smadi, B. Szabados","doi":"10.1109/TIM.2006.876536","DOIUrl":null,"url":null,"abstract":"We develop a service that allows the current IEEE 802.11b MAC protocol to perform dynamic packet sizing and forward error correction. Our service, called ERSMAC, is designed to allow the deployment of the IEEE 802.11b protocol in industrial environments characterized by high BER and fast time variation. ERSMAC uses a maximum likelihood estimate of the BER to solve for the optimal packet size that maximizes the success probability of transmissions while minimizing the overhead cost. ERSMAC also implements an adaptive forward error correction scheme using Reed-Solomon code such that every retransmission attempt has a higher probability of success than the previous attempt due to its association with a stronger RS code. Finally, we show, through simulations, that ERSMAC outperforms the original unmodified IEEE 802.11b protocol in terms of average throughput, average delay and efficiency","PeriodicalId":244878,"journal":{"name":"2005 IEEE Instrumentationand Measurement Technology Conference Proceedings","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Error Recovery Service for the IEEE 802.11B Protocol\",\"authors\":\"M. Smadi, B. Szabados\",\"doi\":\"10.1109/TIM.2006.876536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a service that allows the current IEEE 802.11b MAC protocol to perform dynamic packet sizing and forward error correction. Our service, called ERSMAC, is designed to allow the deployment of the IEEE 802.11b protocol in industrial environments characterized by high BER and fast time variation. ERSMAC uses a maximum likelihood estimate of the BER to solve for the optimal packet size that maximizes the success probability of transmissions while minimizing the overhead cost. ERSMAC also implements an adaptive forward error correction scheme using Reed-Solomon code such that every retransmission attempt has a higher probability of success than the previous attempt due to its association with a stronger RS code. Finally, we show, through simulations, that ERSMAC outperforms the original unmodified IEEE 802.11b protocol in terms of average throughput, average delay and efficiency\",\"PeriodicalId\":244878,\"journal\":{\"name\":\"2005 IEEE Instrumentationand Measurement Technology Conference Proceedings\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 IEEE Instrumentationand Measurement Technology Conference Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TIM.2006.876536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Instrumentationand Measurement Technology Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TIM.2006.876536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Error Recovery Service for the IEEE 802.11B Protocol
We develop a service that allows the current IEEE 802.11b MAC protocol to perform dynamic packet sizing and forward error correction. Our service, called ERSMAC, is designed to allow the deployment of the IEEE 802.11b protocol in industrial environments characterized by high BER and fast time variation. ERSMAC uses a maximum likelihood estimate of the BER to solve for the optimal packet size that maximizes the success probability of transmissions while minimizing the overhead cost. ERSMAC also implements an adaptive forward error correction scheme using Reed-Solomon code such that every retransmission attempt has a higher probability of success than the previous attempt due to its association with a stronger RS code. Finally, we show, through simulations, that ERSMAC outperforms the original unmodified IEEE 802.11b protocol in terms of average throughput, average delay and efficiency