使用傅立叶描述子的手势识别

Heba Gamal, H. M. Abdul-Kader, E. Sallam
{"title":"使用傅立叶描述子的手势识别","authors":"Heba Gamal, H. M. Abdul-Kader, E. Sallam","doi":"10.1109/ICCES.2013.6707218","DOIUrl":null,"url":null,"abstract":"Accurate, real-time hand gesture recognition is a challenging and crucial task due to the need of more natural human-computer interaction methods. The major problem lies in fining a good compromise between the accuracy of recognition and the computational load for the algorithm to run in real-time. In this paper we propose a method for static hand gesture recognition using Fourier descriptors for feature extraction with different classifiers. Fourier descriptors have the advantage of giving a set of features that are invariant to rotation, translation and scaling. They are also efficient in terms of speed as they only use a small number of points from the entire image. The proposed method is evaluated using images from the Cambridge Hand Gesture Dataset at different number of features and different classifiers. The effectiveness of the method is shown through simulation results.","PeriodicalId":277807,"journal":{"name":"2013 8th International Conference on Computer Engineering & Systems (ICCES)","volume":"16 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Hand gesture recognition using fourier descriptors\",\"authors\":\"Heba Gamal, H. M. Abdul-Kader, E. Sallam\",\"doi\":\"10.1109/ICCES.2013.6707218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate, real-time hand gesture recognition is a challenging and crucial task due to the need of more natural human-computer interaction methods. The major problem lies in fining a good compromise between the accuracy of recognition and the computational load for the algorithm to run in real-time. In this paper we propose a method for static hand gesture recognition using Fourier descriptors for feature extraction with different classifiers. Fourier descriptors have the advantage of giving a set of features that are invariant to rotation, translation and scaling. They are also efficient in terms of speed as they only use a small number of points from the entire image. The proposed method is evaluated using images from the Cambridge Hand Gesture Dataset at different number of features and different classifiers. The effectiveness of the method is shown through simulation results.\",\"PeriodicalId\":277807,\"journal\":{\"name\":\"2013 8th International Conference on Computer Engineering & Systems (ICCES)\",\"volume\":\"16 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 8th International Conference on Computer Engineering & Systems (ICCES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCES.2013.6707218\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 8th International Conference on Computer Engineering & Systems (ICCES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCES.2013.6707218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

由于需要更自然的人机交互方法,准确、实时的手势识别是一项具有挑战性和关键的任务。主要问题在于如何在识别精度和计算量之间找到一个好的平衡点,使算法能够实时运行。本文提出了一种利用傅立叶描述子提取不同分类器特征的静态手势识别方法。傅里叶描述子的优点是给出了一组对旋转、平移和缩放不变的特征。它们在速度方面也很高效,因为它们只使用整个图像中的少量点。使用来自剑桥手势数据集的图像在不同数量的特征和不同的分类器上对所提出的方法进行评估。仿真结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hand gesture recognition using fourier descriptors
Accurate, real-time hand gesture recognition is a challenging and crucial task due to the need of more natural human-computer interaction methods. The major problem lies in fining a good compromise between the accuracy of recognition and the computational load for the algorithm to run in real-time. In this paper we propose a method for static hand gesture recognition using Fourier descriptors for feature extraction with different classifiers. Fourier descriptors have the advantage of giving a set of features that are invariant to rotation, translation and scaling. They are also efficient in terms of speed as they only use a small number of points from the entire image. The proposed method is evaluated using images from the Cambridge Hand Gesture Dataset at different number of features and different classifiers. The effectiveness of the method is shown through simulation results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ensemble classifiers for biomedical data: Performance evaluation Hardware architecture dedicated for arithmetic mean filtration implemented in FPGA Non-fragile bilinear state feedback controller for a class of MIMO bilinear systems Learning cross-domain social knowledge from cognitive scripts Design and implementation of course timetabling system based on genetic algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1