{"title":"虚拟机器人运动的协调与同步","authors":"J. Teo, H. Abbass","doi":"10.1109/ICONIP.2002.1199010","DOIUrl":null,"url":null,"abstract":"This paper investigates the use of a multi-objective approach for evolving artificial neural networks that act as controllers for the legged locomotion of a 3-dimensional, artificial quadruped creature simulated in a physics-based environment. The Pareto-frontier Differential Evolution (PDE) algorithm is used to generate a Pareto optimal set of artificial neural networks that optimizes the conflicting objectives of maximizing locomotion behavior and minimizing neural network complexity. Here we provide an insight into how the controller generates the emergent walking behavior in the creature by analyzing the evolved artificial neural networks in operation. A comparison between Pareto optimal controllers showed that ANNs with varying numbers of hidden units resulted in noticeably different locomotion behaviors. We also found that a much higher level of sensory-motor coordination was present in the best evolved controller.","PeriodicalId":146553,"journal":{"name":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Coordination and synchronization of locomotion in a virtual robot\",\"authors\":\"J. Teo, H. Abbass\",\"doi\":\"10.1109/ICONIP.2002.1199010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the use of a multi-objective approach for evolving artificial neural networks that act as controllers for the legged locomotion of a 3-dimensional, artificial quadruped creature simulated in a physics-based environment. The Pareto-frontier Differential Evolution (PDE) algorithm is used to generate a Pareto optimal set of artificial neural networks that optimizes the conflicting objectives of maximizing locomotion behavior and minimizing neural network complexity. Here we provide an insight into how the controller generates the emergent walking behavior in the creature by analyzing the evolved artificial neural networks in operation. A comparison between Pareto optimal controllers showed that ANNs with varying numbers of hidden units resulted in noticeably different locomotion behaviors. We also found that a much higher level of sensory-motor coordination was present in the best evolved controller.\",\"PeriodicalId\":146553,\"journal\":{\"name\":\"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICONIP.2002.1199010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.2002.1199010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Coordination and synchronization of locomotion in a virtual robot
This paper investigates the use of a multi-objective approach for evolving artificial neural networks that act as controllers for the legged locomotion of a 3-dimensional, artificial quadruped creature simulated in a physics-based environment. The Pareto-frontier Differential Evolution (PDE) algorithm is used to generate a Pareto optimal set of artificial neural networks that optimizes the conflicting objectives of maximizing locomotion behavior and minimizing neural network complexity. Here we provide an insight into how the controller generates the emergent walking behavior in the creature by analyzing the evolved artificial neural networks in operation. A comparison between Pareto optimal controllers showed that ANNs with varying numbers of hidden units resulted in noticeably different locomotion behaviors. We also found that a much higher level of sensory-motor coordination was present in the best evolved controller.