为什么以及如何在COVID-19冠状病毒和其他病原体研究中不同地使用人工智能、机器学习和深度学习方法?

Cheng Jtj
{"title":"为什么以及如何在COVID-19冠状病毒和其他病原体研究中不同地使用人工智能、机器学习和深度学习方法?","authors":"Cheng Jtj","doi":"10.23880/aii-16000138","DOIUrl":null,"url":null,"abstract":"Artificial intelligence (AI), machine learning (ML), and deep learning (DL) have become increasingly popular tools and research methodology in many scientific research fields. Examples include improving prediction models by integrating mechanistic immunological information into machine learning [1], using multiomics and spatial integration approaches in conjunction with AI and ML methods to guide future informed cell engineering and precision medicine based on immunological studies data [2], and various other studies summarized by Jabbari P, et al. [3]. Using AI, ML, and DL as novel methods to gain new insights to generate novel vaccine and/or drug designs and discovery has been a revolutionary approach over the past decades [4]. Traditionally, researchers resolve to other computational methods (e.g., molecular dynamics (MD) simulation) to help solve problems of and arise from inadequate and/ unsatisfactory drug binding and affinity to target site(s).","PeriodicalId":409855,"journal":{"name":"Annals of Immunology & Immunotherapy","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Why and how should we use Artificial Intelligence, Machine Learning, and Deep Learning Approaches Differently on COVID-19 Coronavirus and Other Pathogens Research?\",\"authors\":\"Cheng Jtj\",\"doi\":\"10.23880/aii-16000138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial intelligence (AI), machine learning (ML), and deep learning (DL) have become increasingly popular tools and research methodology in many scientific research fields. Examples include improving prediction models by integrating mechanistic immunological information into machine learning [1], using multiomics and spatial integration approaches in conjunction with AI and ML methods to guide future informed cell engineering and precision medicine based on immunological studies data [2], and various other studies summarized by Jabbari P, et al. [3]. Using AI, ML, and DL as novel methods to gain new insights to generate novel vaccine and/or drug designs and discovery has been a revolutionary approach over the past decades [4]. Traditionally, researchers resolve to other computational methods (e.g., molecular dynamics (MD) simulation) to help solve problems of and arise from inadequate and/ unsatisfactory drug binding and affinity to target site(s).\",\"PeriodicalId\":409855,\"journal\":{\"name\":\"Annals of Immunology & Immunotherapy\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Immunology & Immunotherapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23880/aii-16000138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Immunology & Immunotherapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23880/aii-16000138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)、机器学习(ML)和深度学习(DL)已经成为许多科学研究领域日益流行的工具和研究方法。例如通过将机制免疫信息整合到机器学习中来改进预测模型[1],使用多组学和空间集成方法结合AI和ML方法来指导基于免疫学研究数据的未来明智的细胞工程和精准医学[2],以及Jabbari P等人总结的各种其他研究[3]。在过去的几十年里,使用人工智能、机器学习和深度学习作为获得新见解的新方法来产生新的疫苗和/或药物设计和发现已经成为一种革命性的方法[4]。传统上,研究人员倾向于使用其他计算方法(例如,分子动力学(MD)模拟)来帮助解决由于药物与靶点的结合和亲和力不充分和/不理想而产生的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Why and how should we use Artificial Intelligence, Machine Learning, and Deep Learning Approaches Differently on COVID-19 Coronavirus and Other Pathogens Research?
Artificial intelligence (AI), machine learning (ML), and deep learning (DL) have become increasingly popular tools and research methodology in many scientific research fields. Examples include improving prediction models by integrating mechanistic immunological information into machine learning [1], using multiomics and spatial integration approaches in conjunction with AI and ML methods to guide future informed cell engineering and precision medicine based on immunological studies data [2], and various other studies summarized by Jabbari P, et al. [3]. Using AI, ML, and DL as novel methods to gain new insights to generate novel vaccine and/or drug designs and discovery has been a revolutionary approach over the past decades [4]. Traditionally, researchers resolve to other computational methods (e.g., molecular dynamics (MD) simulation) to help solve problems of and arise from inadequate and/ unsatisfactory drug binding and affinity to target site(s).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
COVID-19 and Long Covid as Complex, Multi-Organs Involvement and Multi-System Disease Immunological Disorders in Adult Patients with Trichophytia and Microsporia of the Genital Area, Tajikistan How is the Mechanism of Immunodeficiency Caused by Metallic Implants and What Can they Cause when Inside the Patient's Body? Co-occurrence of Rheumatoid Arthritis and Pulmonary Tuberculosis: A Diagnostic and Therapeutic Challenge The Passing Pandemic? Perspective and Projections for COVID-19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1