基于眼球注视特征的活动分割和识别

S. Amrouche, Benedikt Gollan, A. Ferscha, Josef Heftberger
{"title":"基于眼球注视特征的活动分割和识别","authors":"S. Amrouche, Benedikt Gollan, A. Ferscha, Josef Heftberger","doi":"10.1145/3197768.3197775","DOIUrl":null,"url":null,"abstract":"In coherence with the ongoing digitalization of production processes, Human Computer Interaction (HCI) technologies have evolved rapidly in industrial applications, providing abundant numbers of the versatile tracking and monitoring devices suitable to address complex challenges. This paper focuses on Activity Segmentation and Activity Identification as one of the most crucial challenges in pervasive computing, applying only visual attention features captured through mobile eye-tracking sensors. We propose a novel, application-independent approach towards segmentation of task executions in semi-manual industrial assembly setup via exploiting the expressive properties of the distribution-based gaze feature Nearest Neighbor Index (NNI) to build a dynamic activity segmentation algorithm. The proposed approach is enriched with a machine learning validation model acting as a feedback loop to classify segments qualities. The approach is evaluated in an alpine ski assembly scenario with real-world data reaching an overall of 91% detection accuracy.","PeriodicalId":130190,"journal":{"name":"Proceedings of the 11th PErvasive Technologies Related to Assistive Environments Conference","volume":"207 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Activity Segmentation and Identification based on Eye Gaze Features\",\"authors\":\"S. Amrouche, Benedikt Gollan, A. Ferscha, Josef Heftberger\",\"doi\":\"10.1145/3197768.3197775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In coherence with the ongoing digitalization of production processes, Human Computer Interaction (HCI) technologies have evolved rapidly in industrial applications, providing abundant numbers of the versatile tracking and monitoring devices suitable to address complex challenges. This paper focuses on Activity Segmentation and Activity Identification as one of the most crucial challenges in pervasive computing, applying only visual attention features captured through mobile eye-tracking sensors. We propose a novel, application-independent approach towards segmentation of task executions in semi-manual industrial assembly setup via exploiting the expressive properties of the distribution-based gaze feature Nearest Neighbor Index (NNI) to build a dynamic activity segmentation algorithm. The proposed approach is enriched with a machine learning validation model acting as a feedback loop to classify segments qualities. The approach is evaluated in an alpine ski assembly scenario with real-world data reaching an overall of 91% detection accuracy.\",\"PeriodicalId\":130190,\"journal\":{\"name\":\"Proceedings of the 11th PErvasive Technologies Related to Assistive Environments Conference\",\"volume\":\"207 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th PErvasive Technologies Related to Assistive Environments Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3197768.3197775\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th PErvasive Technologies Related to Assistive Environments Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3197768.3197775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

随着生产流程的不断数字化,人机交互(HCI)技术在工业应用领域发展迅速,提供了大量适用于应对复杂挑战的多功能跟踪和监控设备。作为普适计算领域最关键的挑战之一,本文重点关注活动分割和活动识别,仅应用通过移动眼动跟踪传感器捕获的视觉注意力特征。我们提出了一种新颖的、与应用无关的方法,通过利用基于分布的注视特征近邻索引(NNI)的表达特性来构建动态活动分割算法,从而对半手工工业装配设置中的任务执行进行分割。所提出的方法通过一个机器学习验证模型作为反馈回路,对片段质量进行分类。该方法在高山滑雪装配场景中使用真实世界的数据进行了评估,总体检测准确率达到 91%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Activity Segmentation and Identification based on Eye Gaze Features
In coherence with the ongoing digitalization of production processes, Human Computer Interaction (HCI) technologies have evolved rapidly in industrial applications, providing abundant numbers of the versatile tracking and monitoring devices suitable to address complex challenges. This paper focuses on Activity Segmentation and Activity Identification as one of the most crucial challenges in pervasive computing, applying only visual attention features captured through mobile eye-tracking sensors. We propose a novel, application-independent approach towards segmentation of task executions in semi-manual industrial assembly setup via exploiting the expressive properties of the distribution-based gaze feature Nearest Neighbor Index (NNI) to build a dynamic activity segmentation algorithm. The proposed approach is enriched with a machine learning validation model acting as a feedback loop to classify segments qualities. The approach is evaluated in an alpine ski assembly scenario with real-world data reaching an overall of 91% detection accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Video Based Fall Detection using Features of Motion, Shape and Histogram Evaluating the training transfer of Head-Mounted Display based training for assembly tasks A Taxonomy in Robot-Assisted Training: Current Trends, Needs and Challenges Bicycles and Wheelchairs for Locomotion Control of a Simulated Telerobot Supported by Gaze- and Head-Interaction Experiences with an Assistive System for Manual Assembly
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1