氧化膜对不锈钢中氢渗透速率降低的影响

T. Yamazaki, T. Ikeshoji, A. Suzumura, T. Naito
{"title":"氧化膜对不锈钢中氢渗透速率降低的影响","authors":"T. Yamazaki, T. Ikeshoji, A. Suzumura, T. Naito","doi":"10.1299/JSMEA.49.58","DOIUrl":null,"url":null,"abstract":"Characteristics of hydrogen permeation in the stainless steel 304 modified by either facing, ion sputtering, carbon coating or annealing were investigated in order to establish the safe hydrogen-energy-infrastructure using welding. A stationary hydrogen flux from the stainless steel surface was measured by using a system with an orifice. The pressure difference of the specimen was able to maintain constant by controlling the gas flow rate from the orifice in low pressure vessel. The hydrogen permeability was low in two cases of a thin stainless steel with fine facing and that annealed at 1370K for 2 hours. In these cases, the specimens’ surfaces were considered to play hydrogen trap role and to prevent from pairing hydrogen atoms. On the other hand, high hydrogen permeability was obtained in the case of Argon plasma cleaning a low-pressure-vessel side surface. These results suggest that oxide film on the specimens’ surface prevent hydrogen desorption.","PeriodicalId":170519,"journal":{"name":"Jsme International Journal Series A-solid Mechanics and Material Engineering","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Effect of Oxide Film on the Reduction of Hydrogen Permeation Rate in Stainless Steel\",\"authors\":\"T. Yamazaki, T. Ikeshoji, A. Suzumura, T. Naito\",\"doi\":\"10.1299/JSMEA.49.58\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Characteristics of hydrogen permeation in the stainless steel 304 modified by either facing, ion sputtering, carbon coating or annealing were investigated in order to establish the safe hydrogen-energy-infrastructure using welding. A stationary hydrogen flux from the stainless steel surface was measured by using a system with an orifice. The pressure difference of the specimen was able to maintain constant by controlling the gas flow rate from the orifice in low pressure vessel. The hydrogen permeability was low in two cases of a thin stainless steel with fine facing and that annealed at 1370K for 2 hours. In these cases, the specimens’ surfaces were considered to play hydrogen trap role and to prevent from pairing hydrogen atoms. On the other hand, high hydrogen permeability was obtained in the case of Argon plasma cleaning a low-pressure-vessel side surface. These results suggest that oxide film on the specimens’ surface prevent hydrogen desorption.\",\"PeriodicalId\":170519,\"journal\":{\"name\":\"Jsme International Journal Series A-solid Mechanics and Material Engineering\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jsme International Journal Series A-solid Mechanics and Material Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1299/JSMEA.49.58\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jsme International Journal Series A-solid Mechanics and Material Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/JSMEA.49.58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

为了建立安全的焊接氢能基础,研究了表面处理、离子溅射、碳涂层和退火处理对304不锈钢的渗氢特性。用带孔板的系统测量了不锈钢表面的固定氢通量。通过控制低压容器孔口的气体流量,使试样的压差保持恒定。在1370K退火2小时后,两种细面薄不锈钢的渗氢率较低。在这些情况下,样品的表面被认为起到了氢陷阱的作用,并阻止了氢原子的配对。另一方面,氩气等离子体清洗低压容器侧表面时,获得了较高的氢气渗透率。这些结果表明,试样表面的氧化膜阻止了氢的解吸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of Oxide Film on the Reduction of Hydrogen Permeation Rate in Stainless Steel
Characteristics of hydrogen permeation in the stainless steel 304 modified by either facing, ion sputtering, carbon coating or annealing were investigated in order to establish the safe hydrogen-energy-infrastructure using welding. A stationary hydrogen flux from the stainless steel surface was measured by using a system with an orifice. The pressure difference of the specimen was able to maintain constant by controlling the gas flow rate from the orifice in low pressure vessel. The hydrogen permeability was low in two cases of a thin stainless steel with fine facing and that annealed at 1370K for 2 hours. In these cases, the specimens’ surfaces were considered to play hydrogen trap role and to prevent from pairing hydrogen atoms. On the other hand, high hydrogen permeability was obtained in the case of Argon plasma cleaning a low-pressure-vessel side surface. These results suggest that oxide film on the specimens’ surface prevent hydrogen desorption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of Initiation of the Interfacial Debonding in Single Fiber Composite Two Back Stress Hardening Models in Rate Independent Rigid Plastic Deformation Two Collinear Interface Cracks between Two Dissimilar Functionally Graded Piezoelectric/Piezomagnetic Material Layers under Anti-Plane Shear Loading Investigation the Dynamic Interaction between Two Collinear Cracks in the Functionally Graded Piezoelectric Materials Subjected to the Harmonic Anti-Plane Shear Stress Waves by Using the Non-Local Theory Development of a Finite Element Contact Analysis Algorithm to Pass the Patch Test
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1