自动化低功耗物联网系统的高效可变粒度弹性

Sara S. Baghsorkhi, Christos Margiolas
{"title":"自动化低功耗物联网系统的高效可变粒度弹性","authors":"Sara S. Baghsorkhi, Christos Margiolas","doi":"10.1145/3168816","DOIUrl":null,"url":null,"abstract":"New trends in edge computing encourage pushing more of the compute and analytics to the outer edge and processing most of the data locally. We explore how to transparently provide resiliency for heavy duty edge applications running on low-power devices that must deal with frequent and unpredictable power disruptions. Complicating this process further are (a) memory usage restrictions in tiny low-power devices, that affect not only performance but efficacy of the resiliency techniques, and (b) differing resiliency requirements across deployment environments. Nevertheless, an application developer wants the ability to write an application once, and have it be reusable across all low-power platforms and across all different deployment settings. In response to these challenges, we have devised a transparent roll-back recovery mechanism that performs incremental checkpoints with minimal execution time overhead and at variable granularities. Our solution includes the co-design of firmware, runtime and compiler transformations for providing seamless fault-tolerance, along with an auto-tuning layer that automatically generates multiple resilient variants of an application. Each variant spreads application’s execution over atomic transactional regions of a certain granularity. Variants with smaller regions provide better resiliency, but incur higher overhead; thus, there is no single best option, but rather a Pareto optimal set of configurations. We apply these strategies across a variety of edge device applications and measure the execution time overhead of the framework on a TI MSP430FR6989. When we restrict unin- terrupted atomic intervals to 100ms, our framework keeps geomean overhead below 2.48x.","PeriodicalId":103558,"journal":{"name":"Proceedings of the 2018 International Symposium on Code Generation and Optimization","volume":"156 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Automating efficient variable-grained resiliency for low-power IoT systems\",\"authors\":\"Sara S. Baghsorkhi, Christos Margiolas\",\"doi\":\"10.1145/3168816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"New trends in edge computing encourage pushing more of the compute and analytics to the outer edge and processing most of the data locally. We explore how to transparently provide resiliency for heavy duty edge applications running on low-power devices that must deal with frequent and unpredictable power disruptions. Complicating this process further are (a) memory usage restrictions in tiny low-power devices, that affect not only performance but efficacy of the resiliency techniques, and (b) differing resiliency requirements across deployment environments. Nevertheless, an application developer wants the ability to write an application once, and have it be reusable across all low-power platforms and across all different deployment settings. In response to these challenges, we have devised a transparent roll-back recovery mechanism that performs incremental checkpoints with minimal execution time overhead and at variable granularities. Our solution includes the co-design of firmware, runtime and compiler transformations for providing seamless fault-tolerance, along with an auto-tuning layer that automatically generates multiple resilient variants of an application. Each variant spreads application’s execution over atomic transactional regions of a certain granularity. Variants with smaller regions provide better resiliency, but incur higher overhead; thus, there is no single best option, but rather a Pareto optimal set of configurations. We apply these strategies across a variety of edge device applications and measure the execution time overhead of the framework on a TI MSP430FR6989. When we restrict unin- terrupted atomic intervals to 100ms, our framework keeps geomean overhead below 2.48x.\",\"PeriodicalId\":103558,\"journal\":{\"name\":\"Proceedings of the 2018 International Symposium on Code Generation and Optimization\",\"volume\":\"156 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 International Symposium on Code Generation and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3168816\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 International Symposium on Code Generation and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3168816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

边缘计算的新趋势鼓励将更多的计算和分析推向外部边缘,并在本地处理大部分数据。我们将探讨如何透明地为运行在低功耗设备上的重型边缘应用程序提供弹性,这些设备必须处理频繁和不可预测的电源中断。使这一过程进一步复杂化的是:(a)小型低功耗设备中的内存使用限制,这不仅影响性能,而且影响弹性技术的效率,以及(b)不同部署环境的不同弹性需求。然而,应用程序开发人员希望能够编写一次应用程序,并使其能够跨所有低功耗平台和所有不同的部署设置进行重用。为了应对这些挑战,我们设计了一种透明的回滚恢复机制,以最小的执行时间开销和可变粒度执行增量检查点。我们的解决方案包括固件、运行时和编译器转换的协同设计,以提供无缝的容错,以及自动生成应用程序的多个弹性变体的自动调优层。每个变体将应用程序的执行分散到特定粒度的原子事务区域。具有较小区域的变体提供更好的弹性,但会产生更高的开销;因此,不存在单一的最佳选择,而是一个帕累托最优配置集。我们将这些策略应用于各种边缘设备应用程序,并在TI MSP430FR6989上测量框架的执行时间开销。当我们将不间断原子间隔限制为100ms时,我们的框架将几何开销保持在2.48x以下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automating efficient variable-grained resiliency for low-power IoT systems
New trends in edge computing encourage pushing more of the compute and analytics to the outer edge and processing most of the data locally. We explore how to transparently provide resiliency for heavy duty edge applications running on low-power devices that must deal with frequent and unpredictable power disruptions. Complicating this process further are (a) memory usage restrictions in tiny low-power devices, that affect not only performance but efficacy of the resiliency techniques, and (b) differing resiliency requirements across deployment environments. Nevertheless, an application developer wants the ability to write an application once, and have it be reusable across all low-power platforms and across all different deployment settings. In response to these challenges, we have devised a transparent roll-back recovery mechanism that performs incremental checkpoints with minimal execution time overhead and at variable granularities. Our solution includes the co-design of firmware, runtime and compiler transformations for providing seamless fault-tolerance, along with an auto-tuning layer that automatically generates multiple resilient variants of an application. Each variant spreads application’s execution over atomic transactional regions of a certain granularity. Variants with smaller regions provide better resiliency, but incur higher overhead; thus, there is no single best option, but rather a Pareto optimal set of configurations. We apply these strategies across a variety of edge device applications and measure the execution time overhead of the framework on a TI MSP430FR6989. When we restrict unin- terrupted atomic intervals to 100ms, our framework keeps geomean overhead below 2.48x.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High performance stencil code generation with Lift DeLICM: scalar dependence removal at zero memory cost Local memory-aware kernel perforation Analyzing and optimizing task granularity on the JVM Lightweight detection of cache conflicts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1