用于模拟雷达图像分类的侧抑制神经网络

C. Bachmann, S. Musman, A. Schultz
{"title":"用于模拟雷达图像分类的侧抑制神经网络","authors":"C. Bachmann, S. Musman, A. Schultz","doi":"10.1109/ijcnn.1992.226975","DOIUrl":null,"url":null,"abstract":"The use of neural networks for the classification of simulated inverse synthetic aperture radar (ISAR) imagery is investigated. Certain symmetries of the artificial imagery make the use of localized moments a convenient preprocessing tool for the inputs to a neural network. A database of simulated targets is obtained by warping dynamical models to representative angles and generating images with different target motions. Ordinary backward propagation (BP) and some variants of BP which incorporate lateral inhibition obtain a generalization rate of up to approximately 78% for novel data not used during training, a rate which is comparable to the level of classification accuracy that trained human observers obtained from the unprocessed simulated imagery.<<ETX>>","PeriodicalId":286849,"journal":{"name":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Lateral inhibition neural networks for classification of simulated radar imagery\",\"authors\":\"C. Bachmann, S. Musman, A. Schultz\",\"doi\":\"10.1109/ijcnn.1992.226975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of neural networks for the classification of simulated inverse synthetic aperture radar (ISAR) imagery is investigated. Certain symmetries of the artificial imagery make the use of localized moments a convenient preprocessing tool for the inputs to a neural network. A database of simulated targets is obtained by warping dynamical models to representative angles and generating images with different target motions. Ordinary backward propagation (BP) and some variants of BP which incorporate lateral inhibition obtain a generalization rate of up to approximately 78% for novel data not used during training, a rate which is comparable to the level of classification accuracy that trained human observers obtained from the unprocessed simulated imagery.<<ETX>>\",\"PeriodicalId\":286849,\"journal\":{\"name\":\"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ijcnn.1992.226975\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ijcnn.1992.226975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

研究了神经网络在模拟逆合成孔径雷达(ISAR)图像分类中的应用。人工图像的某些对称性使得局部矩的使用成为神经网络输入的一种方便的预处理工具。通过将动力学模型翘曲到具有代表性的角度,生成具有不同目标运动的图像,得到仿真目标数据库。对于训练中未使用的新数据,普通的反向传播(BP)和一些包含横向抑制的BP变体获得了高达约78%的泛化率,这一比率与训练后的人类观察者从未处理的模拟图像中获得的分类精度水平相当
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lateral inhibition neural networks for classification of simulated radar imagery
The use of neural networks for the classification of simulated inverse synthetic aperture radar (ISAR) imagery is investigated. Certain symmetries of the artificial imagery make the use of localized moments a convenient preprocessing tool for the inputs to a neural network. A database of simulated targets is obtained by warping dynamical models to representative angles and generating images with different target motions. Ordinary backward propagation (BP) and some variants of BP which incorporate lateral inhibition obtain a generalization rate of up to approximately 78% for novel data not used during training, a rate which is comparable to the level of classification accuracy that trained human observers obtained from the unprocessed simulated imagery.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nonlinear system identification using diagonal recurrent neural networks Why error measures are sub-optimal for training neural network pattern classifiers Fuzzy clustering using fuzzy competitive learning networks Design and development of a real-time neural processor using the Intel 80170NX ETANN Precision analysis of stochastic pulse encoding algorithms for neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1