在多传感器EKF中引入上下文信息用于自主陆地车辆定位

F. Caron, E. Duflos, P. Vanheeghe
{"title":"在多传感器EKF中引入上下文信息用于自主陆地车辆定位","authors":"F. Caron, E. Duflos, P. Vanheeghe","doi":"10.1109/ICNSC.2005.1461257","DOIUrl":null,"url":null,"abstract":"The aim of this article is to define a multisensor extended Kalman filter taking context, modelled by fuzzy subsets, into consideration. A nonlinear state model, based on the vehicle dynamics, and three measurement models (GPS, gyroscopes and accelerometers) are developed. In order to take context into consideration, fuzzy validity bounds of each sensor are defined using x/sup 2/ statistics of the normalized innovation given by each sensor. The fuzzification of the validity domain of each sensor is then introduced in the EKF. Simulations are then realized to evaluate the theoretical results. The proposed method is compared to the case when no contextual information is used and when validity bounds are modelled by classical logic. Results show that the fuzzification leads to an improvement of the vehicle positioning.","PeriodicalId":313251,"journal":{"name":"Proceedings. 2005 IEEE Networking, Sensing and Control, 2005.","volume":"59 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Introduction of contextual information in a multisensor EKF for autonomous land vehicle positioning\",\"authors\":\"F. Caron, E. Duflos, P. Vanheeghe\",\"doi\":\"10.1109/ICNSC.2005.1461257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this article is to define a multisensor extended Kalman filter taking context, modelled by fuzzy subsets, into consideration. A nonlinear state model, based on the vehicle dynamics, and three measurement models (GPS, gyroscopes and accelerometers) are developed. In order to take context into consideration, fuzzy validity bounds of each sensor are defined using x/sup 2/ statistics of the normalized innovation given by each sensor. The fuzzification of the validity domain of each sensor is then introduced in the EKF. Simulations are then realized to evaluate the theoretical results. The proposed method is compared to the case when no contextual information is used and when validity bounds are modelled by classical logic. Results show that the fuzzification leads to an improvement of the vehicle positioning.\",\"PeriodicalId\":313251,\"journal\":{\"name\":\"Proceedings. 2005 IEEE Networking, Sensing and Control, 2005.\",\"volume\":\"59 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 2005 IEEE Networking, Sensing and Control, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNSC.2005.1461257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 IEEE Networking, Sensing and Control, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSC.2005.1461257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文的目的是定义一个多传感器扩展卡尔曼滤波器,考虑到上下文,由模糊子集建模。建立了基于车辆动力学的非线性状态模型,以及GPS、陀螺仪和加速度计三种测量模型。为了考虑上下文,使用每个传感器给出的归一化创新的x/sup 2/统计量来定义每个传感器的模糊有效性界限。然后在EKF中引入了每个传感器有效域的模糊化。然后通过仿真对理论结果进行了验证。将该方法与不使用上下文信息和使用经典逻辑建模有效性边界的情况进行了比较。结果表明,模糊化可以提高车辆的定位精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Introduction of contextual information in a multisensor EKF for autonomous land vehicle positioning
The aim of this article is to define a multisensor extended Kalman filter taking context, modelled by fuzzy subsets, into consideration. A nonlinear state model, based on the vehicle dynamics, and three measurement models (GPS, gyroscopes and accelerometers) are developed. In order to take context into consideration, fuzzy validity bounds of each sensor are defined using x/sup 2/ statistics of the normalized innovation given by each sensor. The fuzzification of the validity domain of each sensor is then introduced in the EKF. Simulations are then realized to evaluate the theoretical results. The proposed method is compared to the case when no contextual information is used and when validity bounds are modelled by classical logic. Results show that the fuzzification leads to an improvement of the vehicle positioning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stochastic robust stability analysis for Markovian jumping neural networks with time delays Modeling and performance evaluation of collision resolution algorithms for LonWorks control networks The organization model research of SM crowd Forced and constrained consensus among cooperating agents Routing in stochastic networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1