高速规划船体CFD模拟中数值通风最小化策略

Angus Gray-Stephens, T. Tezdogan, S. Day
{"title":"高速规划船体CFD模拟中数值通风最小化策略","authors":"Angus Gray-Stephens, T. Tezdogan, S. Day","doi":"10.1115/OMAE2019-95784","DOIUrl":null,"url":null,"abstract":"\n Numerical Ventilation (NV) is a well-known problem that occurs when the Volume of Fluid method is used to model vessels with a bow that creates a small, acute entrance angle with the free surface. These are typical of both planing hulls and yachts. There is a general lack of discussion focusing upon Numerical Ventilation available within the public domain, which is attributable to the fact that it only affects such a niche area of naval architecture. The information available is difficult to find, often fleetingly mentioned in papers with a different focus. Numerical Ventilation may be considered one of the main sources of error in numerical simulations of planing hulls and as such warrants an in-depth analysis. This paper sets out to bring together the available work, as well as performing its own investigation into the problem to develop a better understanding of Numerical Ventilation and present alternate solutions. Additionally, the success and impact of different approaches is presented in an attempt to help other researchers avoid and correct for Numerical Ventilation.\n Interface smearing caused by the simulations inability to track the free surface is identified as the main source of Numerical Ventilation. This originates from the interface between the volume mesh and the prism layer mesh. This study looks into the interface to identify strategies that minimise Numerical Ventilation, presenting a novel solution to prism layer meshing that was found to have a positive impact. Through the implementation of a modified High Resolution Interface Capture (HRIC) scheme and the correct mesh refinements, it is possible to minimise the impact of Numerical Ventilation to a level that will not affect the results of a simulation and is acceptable for engineering applications.","PeriodicalId":345141,"journal":{"name":"Volume 2: CFD and FSI","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Strategies to Minimise Numerical Ventilation in CFD Simulations of High-Speed Planing Hulls\",\"authors\":\"Angus Gray-Stephens, T. Tezdogan, S. Day\",\"doi\":\"10.1115/OMAE2019-95784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Numerical Ventilation (NV) is a well-known problem that occurs when the Volume of Fluid method is used to model vessels with a bow that creates a small, acute entrance angle with the free surface. These are typical of both planing hulls and yachts. There is a general lack of discussion focusing upon Numerical Ventilation available within the public domain, which is attributable to the fact that it only affects such a niche area of naval architecture. The information available is difficult to find, often fleetingly mentioned in papers with a different focus. Numerical Ventilation may be considered one of the main sources of error in numerical simulations of planing hulls and as such warrants an in-depth analysis. This paper sets out to bring together the available work, as well as performing its own investigation into the problem to develop a better understanding of Numerical Ventilation and present alternate solutions. Additionally, the success and impact of different approaches is presented in an attempt to help other researchers avoid and correct for Numerical Ventilation.\\n Interface smearing caused by the simulations inability to track the free surface is identified as the main source of Numerical Ventilation. This originates from the interface between the volume mesh and the prism layer mesh. This study looks into the interface to identify strategies that minimise Numerical Ventilation, presenting a novel solution to prism layer meshing that was found to have a positive impact. Through the implementation of a modified High Resolution Interface Capture (HRIC) scheme and the correct mesh refinements, it is possible to minimise the impact of Numerical Ventilation to a level that will not affect the results of a simulation and is acceptable for engineering applications.\",\"PeriodicalId\":345141,\"journal\":{\"name\":\"Volume 2: CFD and FSI\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: CFD and FSI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/OMAE2019-95784\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: CFD and FSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/OMAE2019-95784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

数值通风(NV)是一个众所周知的问题,当使用流体体积法来模拟具有与自由表面形成小而尖锐的入口角的弓形容器时,会发生这种问题。这些都是典型的飞机船体和游艇。在公共领域内,人们普遍缺乏对数值通风的讨论,这是由于它只影响船舶建筑的一个小众领域。可获得的信息很难找到,通常在不同焦点的论文中匆匆提及。数值通风可能被认为是船体数值模拟误差的主要来源之一,因此值得深入分析。本文将汇集现有的工作,以及对问题进行自己的调查,以更好地理解数值通风并提出替代解决方案。此外,介绍了不同方法的成功和影响,试图帮助其他研究人员避免和纠正数值通风。由于模拟无法跟踪自由表面而导致的界面涂抹是数值通风的主要来源。这源于体网格和棱镜层网格之间的接口。本研究着眼于界面,以确定最小化数值通风的策略,提出了一种新的解决方案,以棱镜层网格划分,被发现具有积极的影响。通过实施改进的高分辨率界面捕获(HRIC)方案和正确的网格细化,可以将数值通风的影响最小化到不会影响模拟结果的水平,并且可以接受工程应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Strategies to Minimise Numerical Ventilation in CFD Simulations of High-Speed Planing Hulls
Numerical Ventilation (NV) is a well-known problem that occurs when the Volume of Fluid method is used to model vessels with a bow that creates a small, acute entrance angle with the free surface. These are typical of both planing hulls and yachts. There is a general lack of discussion focusing upon Numerical Ventilation available within the public domain, which is attributable to the fact that it only affects such a niche area of naval architecture. The information available is difficult to find, often fleetingly mentioned in papers with a different focus. Numerical Ventilation may be considered one of the main sources of error in numerical simulations of planing hulls and as such warrants an in-depth analysis. This paper sets out to bring together the available work, as well as performing its own investigation into the problem to develop a better understanding of Numerical Ventilation and present alternate solutions. Additionally, the success and impact of different approaches is presented in an attempt to help other researchers avoid and correct for Numerical Ventilation. Interface smearing caused by the simulations inability to track the free surface is identified as the main source of Numerical Ventilation. This originates from the interface between the volume mesh and the prism layer mesh. This study looks into the interface to identify strategies that minimise Numerical Ventilation, presenting a novel solution to prism layer meshing that was found to have a positive impact. Through the implementation of a modified High Resolution Interface Capture (HRIC) scheme and the correct mesh refinements, it is possible to minimise the impact of Numerical Ventilation to a level that will not affect the results of a simulation and is acceptable for engineering applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development and Validation of CFD Analysis Procedure for Predicting Wind Load on Commercial Ships Multi-Phase Simulation of Droplet Trajectories of Wave-Impact Sea Spray Over a Vessel Numerical Study of Breaking Waves and Associated Wave Forces on a Jacket Substructure for Offshore Wind Turbines Numerical Simulation of Trim Optimization on Resistance Performance Based on CFD Method Fundamental CFD Study on the Hydrodynamic Performance of the DARPA SUBOFF Submarine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1