{"title":"进化计算中的可计算收敛率","authors":"D. R. Stark, J. Spall","doi":"10.1109/ICIF.2002.1021135","DOIUrl":null,"url":null,"abstract":"The broad field of evolutionary computation (EC)-including genetic algorithms as a special case-has attracted much attention in the last several decades. Many bold claims have been made about the effectiveness of various EC algorithms. These claims have centered on the efficiency, robustness, and ease of implementation of EC approaches. Unfortunately, there seems to be little theory to support such claims. One key step to formally evaluating or substantiating such claims is to establish rigorous results on the rate of convergence of EC algorithms. This paper presents a computable rate of convergence for a class of ECs that includes the standard genetic algorithm as a special case.","PeriodicalId":399150,"journal":{"name":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Computable rate of convergence in evolutionary computation\",\"authors\":\"D. R. Stark, J. Spall\",\"doi\":\"10.1109/ICIF.2002.1021135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The broad field of evolutionary computation (EC)-including genetic algorithms as a special case-has attracted much attention in the last several decades. Many bold claims have been made about the effectiveness of various EC algorithms. These claims have centered on the efficiency, robustness, and ease of implementation of EC approaches. Unfortunately, there seems to be little theory to support such claims. One key step to formally evaluating or substantiating such claims is to establish rigorous results on the rate of convergence of EC algorithms. This paper presents a computable rate of convergence for a class of ECs that includes the standard genetic algorithm as a special case.\",\"PeriodicalId\":399150,\"journal\":{\"name\":\"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIF.2002.1021135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2002.1021135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

进化计算(EC)的广泛领域——包括作为特例的遗传算法——在过去的几十年里引起了人们的广泛关注。关于各种EC算法的有效性,已经提出了许多大胆的主张。这些主张集中在EC方法的效率、健壮性和易于实现上。不幸的是,似乎没有什么理论支持这种说法。正式评估或证实这种说法的一个关键步骤是建立EC算法收敛速度的严格结果。本文给出了一类包含标准遗传算法作为特例的可计算收敛率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computable rate of convergence in evolutionary computation
The broad field of evolutionary computation (EC)-including genetic algorithms as a special case-has attracted much attention in the last several decades. Many bold claims have been made about the effectiveness of various EC algorithms. These claims have centered on the efficiency, robustness, and ease of implementation of EC approaches. Unfortunately, there seems to be little theory to support such claims. One key step to formally evaluating or substantiating such claims is to establish rigorous results on the rate of convergence of EC algorithms. This paper presents a computable rate of convergence for a class of ECs that includes the standard genetic algorithm as a special case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Approximating fuzzy measures by hierarchically decomposable ones Tracking and fusion for wireless sensor networks A dynamic communication model for loosely coupled hybrid tracking systems On platform-based sensor management An improved Bayes fusion algorithm with the Parzen window method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1