用于高灵敏度应变测量的长周期光栅的辐射和锥度调整

S. Chaubey, S. Kher, S. M. Oak
{"title":"用于高灵敏度应变测量的长周期光栅的辐射和锥度调整","authors":"S. Chaubey, S. Kher, S. M. Oak","doi":"10.1109/WFOPC.2011.6089670","DOIUrl":null,"url":null,"abstract":"Turn around point (TAP) in long period fiber grating (LPG) provides extremely high sensitivity to external environmental parameters like temperature, strain and refractive index. It also opens up new dimensions for development of photonic devices. Higher order cladding mode coupling in a LPG requires relatively lower grating period (< 300 µm), which can be achieved by improving the spot size in CO2 laser based grating inscription methods. But the inscription of LPG with resonance exactly at TAP within 950–1700 nm wavelength band requires a period precision better than 0.5 µm. Since, our fabrication system based on automated CO2 laser has limited translational resolution, we have used exposure to gamma radiation and tapering of fiber as tools to tailor the spectral characteristics of our gratings. Total Gamma radiation exposure of about 6 kGy resulted in ± 35nm wavelength shift of dual resonant loss peaks in a 206 µm period near TAP-LPG, almost merging the two peaks. This exposed LPG was then tapered using CO2 laser for exact TAP operation. Amplitude based strain sensitivity of 1.13dB/me was obtained with tuned TAP LPG.","PeriodicalId":374957,"journal":{"name":"2011 7th International Workshop on Fibre and Optical Passive Components","volume":"87 8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Radiation and taper tuning of Long Period Grating for high sensitivity strain measurement\",\"authors\":\"S. Chaubey, S. Kher, S. M. Oak\",\"doi\":\"10.1109/WFOPC.2011.6089670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Turn around point (TAP) in long period fiber grating (LPG) provides extremely high sensitivity to external environmental parameters like temperature, strain and refractive index. It also opens up new dimensions for development of photonic devices. Higher order cladding mode coupling in a LPG requires relatively lower grating period (< 300 µm), which can be achieved by improving the spot size in CO2 laser based grating inscription methods. But the inscription of LPG with resonance exactly at TAP within 950–1700 nm wavelength band requires a period precision better than 0.5 µm. Since, our fabrication system based on automated CO2 laser has limited translational resolution, we have used exposure to gamma radiation and tapering of fiber as tools to tailor the spectral characteristics of our gratings. Total Gamma radiation exposure of about 6 kGy resulted in ± 35nm wavelength shift of dual resonant loss peaks in a 206 µm period near TAP-LPG, almost merging the two peaks. This exposed LPG was then tapered using CO2 laser for exact TAP operation. Amplitude based strain sensitivity of 1.13dB/me was obtained with tuned TAP LPG.\",\"PeriodicalId\":374957,\"journal\":{\"name\":\"2011 7th International Workshop on Fibre and Optical Passive Components\",\"volume\":\"87 8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 7th International Workshop on Fibre and Optical Passive Components\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WFOPC.2011.6089670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 7th International Workshop on Fibre and Optical Passive Components","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WFOPC.2011.6089670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

长周期光纤光栅(LPG)的旋转点(TAP)对外部环境参数(如温度、应变和折射率)具有极高的灵敏度。它也为光子器件的发展开辟了新的维度。LPG中高阶包层模式耦合需要相对较低的光栅周期(<300µm),这可以通过提高基于CO2激光的光栅刻字方法中的光斑尺寸来实现。而在950 ~ 1700nm波长范围内精确地在TAP上刻字,周期精度要求大于0.5µm。由于我们基于自动化CO2激光器的制造系统平移分辨率有限,因此我们使用伽马辐射暴露和光纤变细作为工具来定制光栅的光谱特性。约6 kGy的总伽马辐射暴露导致TAP-LPG附近的双谐振损耗峰在206µm周期内的波长位移为±35nm,几乎合并了两个峰。然后使用CO2激光将暴露的LPG变细,以进行精确的TAP操作。调谐后的TAP LPG获得了1.13dB/me的振幅应变灵敏度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Radiation and taper tuning of Long Period Grating for high sensitivity strain measurement
Turn around point (TAP) in long period fiber grating (LPG) provides extremely high sensitivity to external environmental parameters like temperature, strain and refractive index. It also opens up new dimensions for development of photonic devices. Higher order cladding mode coupling in a LPG requires relatively lower grating period (< 300 µm), which can be achieved by improving the spot size in CO2 laser based grating inscription methods. But the inscription of LPG with resonance exactly at TAP within 950–1700 nm wavelength band requires a period precision better than 0.5 µm. Since, our fabrication system based on automated CO2 laser has limited translational resolution, we have used exposure to gamma radiation and tapering of fiber as tools to tailor the spectral characteristics of our gratings. Total Gamma radiation exposure of about 6 kGy resulted in ± 35nm wavelength shift of dual resonant loss peaks in a 206 µm period near TAP-LPG, almost merging the two peaks. This exposed LPG was then tapered using CO2 laser for exact TAP operation. Amplitude based strain sensitivity of 1.13dB/me was obtained with tuned TAP LPG.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An accurate measurement method for optical radiation loss of silicon-on-insulator curved waveguides Dataglove for consumer applications Chirped Bragg grating in silicon based rib waveguide PDMS waveguide integrated microfluidic chip for the detection of fluorophore tagged polypeptides Dual-parameter optical fiber sensors for structural health monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1