利用全卷积网络预测多孔材料的弹性应力

Ö. Keleş, Yinchuan He, B. Sirkeci-Mergen
{"title":"利用全卷积网络预测多孔材料的弹性应力","authors":"Ö. Keleş, Yinchuan He, B. Sirkeci-Mergen","doi":"10.2139/ssrn.3714501","DOIUrl":null,"url":null,"abstract":"Abstract Machine learning (ML) models enable exploration of vast structural space faster than the traditional methods, such as finite element method (FEM). This makes ML models suitable for stochastic fracture problems in brittle porous materials. In this work, fully convolutional networks (FCNs) were trained to predict stress and stress concentration factor distributions in two-dimensional isotropic elastic materials with uniform porosity. We show that even with downsampled data, FCN models predict the stress distributions for a given porous structure. FCN predicted stress concentration factors 10,000 times faster than the FEM simulations. The FCN-predicted stresses combined with fracture mechanics captured the effect of porosity on the strength of porous glass. Increasing variations in pore size increased the variations in fracture strength. Furthermore, the FCN model predicts the pore configurations with the lowest and highest stresses from a set of structures, enabling ML optimization of porous microstructures for increased reliability.","PeriodicalId":180833,"journal":{"name":"Mechanical Properties & Deformation of Materials eJournal","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Prediction of Elastic Stresses in Porous Materials Using Fully Convolutional Networks\",\"authors\":\"Ö. Keleş, Yinchuan He, B. Sirkeci-Mergen\",\"doi\":\"10.2139/ssrn.3714501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Machine learning (ML) models enable exploration of vast structural space faster than the traditional methods, such as finite element method (FEM). This makes ML models suitable for stochastic fracture problems in brittle porous materials. In this work, fully convolutional networks (FCNs) were trained to predict stress and stress concentration factor distributions in two-dimensional isotropic elastic materials with uniform porosity. We show that even with downsampled data, FCN models predict the stress distributions for a given porous structure. FCN predicted stress concentration factors 10,000 times faster than the FEM simulations. The FCN-predicted stresses combined with fracture mechanics captured the effect of porosity on the strength of porous glass. Increasing variations in pore size increased the variations in fracture strength. Furthermore, the FCN model predicts the pore configurations with the lowest and highest stresses from a set of structures, enabling ML optimization of porous microstructures for increased reliability.\",\"PeriodicalId\":180833,\"journal\":{\"name\":\"Mechanical Properties & Deformation of Materials eJournal\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanical Properties & Deformation of Materials eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3714501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanical Properties & Deformation of Materials eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3714501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

机器学习(ML)模型能够比传统的方法(如有限元法(FEM))更快地探索广阔的结构空间。这使得ML模型适用于脆性多孔材料的随机断裂问题。在这项工作中,训练全卷积网络(fcv)来预测具有均匀孔隙率的二维各向同性弹性材料的应力和应力集中系数分布。我们表明,即使使用下采样数据,FCN模型也可以预测给定多孔结构的应力分布。FCN预测应力集中系数的速度比FEM模拟快1万倍。结合断裂力学,fcn预测的应力捕获了孔隙率对多孔玻璃强度的影响。孔隙大小的变化增加了断裂强度的变化。此外,FCN模型预测了一组结构中具有最低和最高应力的孔隙结构,从而实现了多孔微结构的ML优化,从而提高了可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of Elastic Stresses in Porous Materials Using Fully Convolutional Networks
Abstract Machine learning (ML) models enable exploration of vast structural space faster than the traditional methods, such as finite element method (FEM). This makes ML models suitable for stochastic fracture problems in brittle porous materials. In this work, fully convolutional networks (FCNs) were trained to predict stress and stress concentration factor distributions in two-dimensional isotropic elastic materials with uniform porosity. We show that even with downsampled data, FCN models predict the stress distributions for a given porous structure. FCN predicted stress concentration factors 10,000 times faster than the FEM simulations. The FCN-predicted stresses combined with fracture mechanics captured the effect of porosity on the strength of porous glass. Increasing variations in pore size increased the variations in fracture strength. Furthermore, the FCN model predicts the pore configurations with the lowest and highest stresses from a set of structures, enabling ML optimization of porous microstructures for increased reliability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Genesis of Plasticity-Induced Serrated Metal Flow in Medium-Mn Steel Tuning Mechanical Properties of High Entropy Alloys by Electro-Pulsing Method Compression Fatigue Properties and Damage Mechanisms of a Bioinspired Nacre-Like Ceramic-Polymer Composite Grain Size Altering Yielding Mechanisms in Ultrafine Grained High-Mn Austenitic Steel: Advanced TEM Investigations Microstructure and Deformation Behaviour of Austenitic Low-Density Steels: The Defining Role of B2 Intermetallic Phase
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1