基于全局描述和半监督标签的城市搜救场景识别

J. Sanchez-Diaz, Francisco Javier Gañán, R. Tapia, J. R. M. Dios, A. Ollero
{"title":"基于全局描述和半监督标签的城市搜救场景识别","authors":"J. Sanchez-Diaz, Francisco Javier Gañán, R. Tapia, J. R. M. Dios, A. Ollero","doi":"10.1109/SSRR56537.2022.10018660","DOIUrl":null,"url":null,"abstract":"Autonomous aerial robots for urban search and rescue (USAR) operations require robust perception systems for localization and mapping. Although local feature description is widely used for geometric map construction, global image descriptors leverage scene information to perform semantic localization, allowing topological maps to consider relations between places and elements in the scenario. This paper proposes a scene recognition method for USAR operations using a collaborative human-robot approach. The proposed method uses global image description to train an SVM-based classification model with semi-supervised labeled data. It has been experimentally validated in several indoor scenarios on board a multirotor robot.","PeriodicalId":272862,"journal":{"name":"2022 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR)","volume":"86 9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scene Recognition for Urban Search and Rescue using Global Description and Semi-Supervised Labelling\",\"authors\":\"J. Sanchez-Diaz, Francisco Javier Gañán, R. Tapia, J. R. M. Dios, A. Ollero\",\"doi\":\"10.1109/SSRR56537.2022.10018660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous aerial robots for urban search and rescue (USAR) operations require robust perception systems for localization and mapping. Although local feature description is widely used for geometric map construction, global image descriptors leverage scene information to perform semantic localization, allowing topological maps to consider relations between places and elements in the scenario. This paper proposes a scene recognition method for USAR operations using a collaborative human-robot approach. The proposed method uses global image description to train an SVM-based classification model with semi-supervised labeled data. It has been experimentally validated in several indoor scenarios on board a multirotor robot.\",\"PeriodicalId\":272862,\"journal\":{\"name\":\"2022 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR)\",\"volume\":\"86 9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSRR56537.2022.10018660\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSRR56537.2022.10018660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

用于城市搜索和救援(USAR)行动的自主空中机器人需要强大的定位和地图感知系统。虽然局部特征描述被广泛用于几何地图构建,但全局图像描述符利用场景信息执行语义定位,允许拓扑地图考虑场景中地点和元素之间的关系。本文提出了一种基于人机协作的USAR作战场景识别方法。该方法利用全局图像描述训练基于svm的半监督标记数据分类模型。该方法已在多旋翼机器人的多个室内场景中进行了实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scene Recognition for Urban Search and Rescue using Global Description and Semi-Supervised Labelling
Autonomous aerial robots for urban search and rescue (USAR) operations require robust perception systems for localization and mapping. Although local feature description is widely used for geometric map construction, global image descriptors leverage scene information to perform semantic localization, allowing topological maps to consider relations between places and elements in the scenario. This paper proposes a scene recognition method for USAR operations using a collaborative human-robot approach. The proposed method uses global image description to train an SVM-based classification model with semi-supervised labeled data. It has been experimentally validated in several indoor scenarios on board a multirotor robot.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Autonomous Human Navigation Using Wearable Multiple Laser Projection Suit An innovative pick-up and transport robot system for casualty evacuation DynaBARN: Benchmarking Metric Ground Navigation in Dynamic Environments Multi-Robot System for Autonomous Cooperative Counter-UAS Missions: Design, Integration, and Field Testing Autonomous Robotic Map Refinement for Targeted Resolution and Local Accuracy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1