{"title":"三维集成电路中电力传输和数据互连网络的协同综合方法","authors":"N. Kapadia, S. Pasricha","doi":"10.1109/ISQED.2013.6523593","DOIUrl":null,"url":null,"abstract":"A stable voltage supply is critical for multiprocessor system-on-chips (MPSoCs) to operate at near-optimal performance levels. The problem of IR drops in a Power Delivery Network (PDN) is very severe in 3D MPSoCs with network-on-chip (NoC) fabrics where the current in the PDN increases proportionally with the number of device layers. At the same time, with the increasing core counts in today's power-hungry MPSoCs, the already hard problem of voltage island-aware Network-on-Chip (NoC) design has become even more challenging. Even though the PDN and NoC design goals are non-overlapping, both the optimizations are interdependent. Unfortunately, designers today seldom consider design of the PDN while synthesizing NoCs. In this work, for the first time, we propose a novel system-level co-synthesis methodology that minimizes 3D NoC energy while meeting performance goals; and simultaneously optimizes the 3D PDN design while satisfying IR-drop constraints. Our experimental results show that the proposed co-synthesis methodology meets IR-drop constraints while minimizing energy consumption for several real-world applications, improving upon results from traditional system-level methodologies that perform PDN design and NoC synthesis separately.","PeriodicalId":127115,"journal":{"name":"International Symposium on Quality Electronic Design (ISQED)","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A co-synthesis methodology for power delivery and data interconnection networks in 3D ICs\",\"authors\":\"N. Kapadia, S. Pasricha\",\"doi\":\"10.1109/ISQED.2013.6523593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A stable voltage supply is critical for multiprocessor system-on-chips (MPSoCs) to operate at near-optimal performance levels. The problem of IR drops in a Power Delivery Network (PDN) is very severe in 3D MPSoCs with network-on-chip (NoC) fabrics where the current in the PDN increases proportionally with the number of device layers. At the same time, with the increasing core counts in today's power-hungry MPSoCs, the already hard problem of voltage island-aware Network-on-Chip (NoC) design has become even more challenging. Even though the PDN and NoC design goals are non-overlapping, both the optimizations are interdependent. Unfortunately, designers today seldom consider design of the PDN while synthesizing NoCs. In this work, for the first time, we propose a novel system-level co-synthesis methodology that minimizes 3D NoC energy while meeting performance goals; and simultaneously optimizes the 3D PDN design while satisfying IR-drop constraints. Our experimental results show that the proposed co-synthesis methodology meets IR-drop constraints while minimizing energy consumption for several real-world applications, improving upon results from traditional system-level methodologies that perform PDN design and NoC synthesis separately.\",\"PeriodicalId\":127115,\"journal\":{\"name\":\"International Symposium on Quality Electronic Design (ISQED)\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Quality Electronic Design (ISQED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED.2013.6523593\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2013.6523593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A co-synthesis methodology for power delivery and data interconnection networks in 3D ICs
A stable voltage supply is critical for multiprocessor system-on-chips (MPSoCs) to operate at near-optimal performance levels. The problem of IR drops in a Power Delivery Network (PDN) is very severe in 3D MPSoCs with network-on-chip (NoC) fabrics where the current in the PDN increases proportionally with the number of device layers. At the same time, with the increasing core counts in today's power-hungry MPSoCs, the already hard problem of voltage island-aware Network-on-Chip (NoC) design has become even more challenging. Even though the PDN and NoC design goals are non-overlapping, both the optimizations are interdependent. Unfortunately, designers today seldom consider design of the PDN while synthesizing NoCs. In this work, for the first time, we propose a novel system-level co-synthesis methodology that minimizes 3D NoC energy while meeting performance goals; and simultaneously optimizes the 3D PDN design while satisfying IR-drop constraints. Our experimental results show that the proposed co-synthesis methodology meets IR-drop constraints while minimizing energy consumption for several real-world applications, improving upon results from traditional system-level methodologies that perform PDN design and NoC synthesis separately.