{"title":"格值信息系统的决策理论粗糙集方法","authors":"Jianhang Yu, Hiroshi Morita, Minghao Chen, Weihua Xu","doi":"10.1109/ICMLC48188.2019.8949263","DOIUrl":null,"url":null,"abstract":"The decision-theoretic rough set utilizes Bayesian decision to interpret the thresholds of probabilistic rough set model. That provides a novel semantic description for rough regions in the viewpoint of three-way decision theory and has been applied to numerous fields. However, it lacks the ability to deal with lattice-valued information system (LvIS), in which the condition attribute set consists of multiple types of attributes and their domain constitute lattice. Therefore, this study concentrates on the decision-theoretic rough approach in a LvIS. Then, the total decision cost associated with rough regions is addressed and an attribute reduction algorithm will be designed based on minimum decision cost. Finally, a case study on medical diagnosis is conducted to illustrate the decision procedure and attribute reduction approach.","PeriodicalId":221349,"journal":{"name":"2019 International Conference on Machine Learning and Cybernetics (ICMLC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Decision-Theoretic Rough Set Approach to Lattice-Valued Information System\",\"authors\":\"Jianhang Yu, Hiroshi Morita, Minghao Chen, Weihua Xu\",\"doi\":\"10.1109/ICMLC48188.2019.8949263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The decision-theoretic rough set utilizes Bayesian decision to interpret the thresholds of probabilistic rough set model. That provides a novel semantic description for rough regions in the viewpoint of three-way decision theory and has been applied to numerous fields. However, it lacks the ability to deal with lattice-valued information system (LvIS), in which the condition attribute set consists of multiple types of attributes and their domain constitute lattice. Therefore, this study concentrates on the decision-theoretic rough approach in a LvIS. Then, the total decision cost associated with rough regions is addressed and an attribute reduction algorithm will be designed based on minimum decision cost. Finally, a case study on medical diagnosis is conducted to illustrate the decision procedure and attribute reduction approach.\",\"PeriodicalId\":221349,\"journal\":{\"name\":\"2019 International Conference on Machine Learning and Cybernetics (ICMLC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Machine Learning and Cybernetics (ICMLC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC48188.2019.8949263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Machine Learning and Cybernetics (ICMLC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC48188.2019.8949263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Decision-Theoretic Rough Set Approach to Lattice-Valued Information System
The decision-theoretic rough set utilizes Bayesian decision to interpret the thresholds of probabilistic rough set model. That provides a novel semantic description for rough regions in the viewpoint of three-way decision theory and has been applied to numerous fields. However, it lacks the ability to deal with lattice-valued information system (LvIS), in which the condition attribute set consists of multiple types of attributes and their domain constitute lattice. Therefore, this study concentrates on the decision-theoretic rough approach in a LvIS. Then, the total decision cost associated with rough regions is addressed and an attribute reduction algorithm will be designed based on minimum decision cost. Finally, a case study on medical diagnosis is conducted to illustrate the decision procedure and attribute reduction approach.