Lp正则化问题的一般阈值表示

Hengyong Yu, Chuang Miao
{"title":"Lp正则化问题的一般阈值表示","authors":"Hengyong Yu, Chuang Miao","doi":"10.1109/ISBI.2014.6867844","DOIUrl":null,"url":null,"abstract":"Inspired by the Compressive sensing (CS) theory, the Lp regularization methods have attracted a great attention. The Lp regularization is a generalized version of the well-known L1 regularization for sparser solution. In this paper, we derive a general thresholding representation for the Lp (0 <; p <; 1) regularization problem in term of a recursive function, which can be well approximated by few steps. This representation can be simplified to the well-known soft-threshold filtering for L1 regularization, the hard-threshold filtering for L0 regularization, and the recently reported half-threshold filtering for L1/2 regularization. This general threshold representation can be easily incorporated into the iterative thresholding framework to provide a tool for sparsity problems.","PeriodicalId":440405,"journal":{"name":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"General thresholding representation for the Lp regularization problem\",\"authors\":\"Hengyong Yu, Chuang Miao\",\"doi\":\"10.1109/ISBI.2014.6867844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inspired by the Compressive sensing (CS) theory, the Lp regularization methods have attracted a great attention. The Lp regularization is a generalized version of the well-known L1 regularization for sparser solution. In this paper, we derive a general thresholding representation for the Lp (0 <; p <; 1) regularization problem in term of a recursive function, which can be well approximated by few steps. This representation can be simplified to the well-known soft-threshold filtering for L1 regularization, the hard-threshold filtering for L0 regularization, and the recently reported half-threshold filtering for L1/2 regularization. This general threshold representation can be easily incorporated into the iterative thresholding framework to provide a tool for sparsity problems.\",\"PeriodicalId\":440405,\"journal\":{\"name\":\"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2014.6867844\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2014.6867844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

受压缩感知(CS)理论的启发,Lp正则化方法受到了广泛的关注。Lp正则化是众所周知的用于稀疏解决方案的L1正则化的一般化版本。在本文中,我们导出了Lp (0 <;p <;1)用递归函数表示的正则化问题,它可以用几个步骤很好地逼近。这种表示可以简化为L1正则化的众所周知的软阈值滤波,L0正则化的硬阈值滤波,以及最近报道的L1/2正则化的半阈值滤波。这种通用的阈值表示可以很容易地合并到迭代阈值框架中,从而为稀疏性问题提供一个工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
General thresholding representation for the Lp regularization problem
Inspired by the Compressive sensing (CS) theory, the Lp regularization methods have attracted a great attention. The Lp regularization is a generalized version of the well-known L1 regularization for sparser solution. In this paper, we derive a general thresholding representation for the Lp (0 <; p <; 1) regularization problem in term of a recursive function, which can be well approximated by few steps. This representation can be simplified to the well-known soft-threshold filtering for L1 regularization, the hard-threshold filtering for L0 regularization, and the recently reported half-threshold filtering for L1/2 regularization. This general threshold representation can be easily incorporated into the iterative thresholding framework to provide a tool for sparsity problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MRI based attenuation correction for PET/MRI via MRF segmentation and sparse regression estimated CT DTI-DeformIt: Generating ground-truth validation data for diffusion tensor image analysis tasks Functional parcellation of the hippocampus by clustering resting state fMRI signals Detecting cell assembly interaction patterns via Bayesian based change-point detection and graph inference model Topological texture-based method for mass detection in breast ultrasound image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1