{"title":"基于rnn的LSTM网络改进蛋白质序列残基接触预测","authors":"Wenjing Chen, Jianfeng Sun, Chunhui Gao","doi":"10.1109/ICMLC48188.2019.8949207","DOIUrl":null,"url":null,"abstract":"Accurate prediction of residue-residue contacts is of crucial importance for protein structure predictions and function studies. The advantages of coevolution-based methods to predict residue-residue contacts have been made manifest in the past decade. However, the prediction of residue-residue contacts remains a challenging task since these methods need abundant homologous protein sequences to obtain higher precision. Benefiting from the rapid development and the ever-widening use of deep learning methods, we attempted to use an intelligent method to predict residue-residue contacts at an intra-protein level. The backbone of the deep learning method is a recurrent neural network (RNN) with 5-layer long short-term memory (LSTM) cells. We describe this computational model for predicting residue-residue contacts, evaluate the method on three datasets of protein chain, and report the predictive performance in obtaining 45.72%, 40.35%, 39.06% prediction precisions on long range at cut-off value L, respectively, which shows a small improvement. In addition, we also display the effects of amino acid features involved in predicting residue-residue contacts by using three unsupervised machine learning methods. The performance of our method trained on a small dataset of protein sequences sheds light on the potential usefulness of applying recurrent neural network into residue-residue contact prediction.","PeriodicalId":221349,"journal":{"name":"2019 International Conference on Machine Learning and Cybernetics (ICMLC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving Residue-Residue Contacts Prediction from Protein Sequences Using RNN-Based LSTM Network\",\"authors\":\"Wenjing Chen, Jianfeng Sun, Chunhui Gao\",\"doi\":\"10.1109/ICMLC48188.2019.8949207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate prediction of residue-residue contacts is of crucial importance for protein structure predictions and function studies. The advantages of coevolution-based methods to predict residue-residue contacts have been made manifest in the past decade. However, the prediction of residue-residue contacts remains a challenging task since these methods need abundant homologous protein sequences to obtain higher precision. Benefiting from the rapid development and the ever-widening use of deep learning methods, we attempted to use an intelligent method to predict residue-residue contacts at an intra-protein level. The backbone of the deep learning method is a recurrent neural network (RNN) with 5-layer long short-term memory (LSTM) cells. We describe this computational model for predicting residue-residue contacts, evaluate the method on three datasets of protein chain, and report the predictive performance in obtaining 45.72%, 40.35%, 39.06% prediction precisions on long range at cut-off value L, respectively, which shows a small improvement. In addition, we also display the effects of amino acid features involved in predicting residue-residue contacts by using three unsupervised machine learning methods. The performance of our method trained on a small dataset of protein sequences sheds light on the potential usefulness of applying recurrent neural network into residue-residue contact prediction.\",\"PeriodicalId\":221349,\"journal\":{\"name\":\"2019 International Conference on Machine Learning and Cybernetics (ICMLC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Machine Learning and Cybernetics (ICMLC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC48188.2019.8949207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Machine Learning and Cybernetics (ICMLC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC48188.2019.8949207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improving Residue-Residue Contacts Prediction from Protein Sequences Using RNN-Based LSTM Network
Accurate prediction of residue-residue contacts is of crucial importance for protein structure predictions and function studies. The advantages of coevolution-based methods to predict residue-residue contacts have been made manifest in the past decade. However, the prediction of residue-residue contacts remains a challenging task since these methods need abundant homologous protein sequences to obtain higher precision. Benefiting from the rapid development and the ever-widening use of deep learning methods, we attempted to use an intelligent method to predict residue-residue contacts at an intra-protein level. The backbone of the deep learning method is a recurrent neural network (RNN) with 5-layer long short-term memory (LSTM) cells. We describe this computational model for predicting residue-residue contacts, evaluate the method on three datasets of protein chain, and report the predictive performance in obtaining 45.72%, 40.35%, 39.06% prediction precisions on long range at cut-off value L, respectively, which shows a small improvement. In addition, we also display the effects of amino acid features involved in predicting residue-residue contacts by using three unsupervised machine learning methods. The performance of our method trained on a small dataset of protein sequences sheds light on the potential usefulness of applying recurrent neural network into residue-residue contact prediction.