N. P. Pereira, C. Gatto, E. Oliveira, T. Fernandes
{"title":"非编码rna在心血管系统:运动训练的影响","authors":"N. P. Pereira, C. Gatto, E. Oliveira, T. Fernandes","doi":"10.5772/intechopen.86054","DOIUrl":null,"url":null,"abstract":"Exercise training (ET) represents a non-pharmacological treatment that can attenuate or even reverse the process of cardiovascular diseases (CVD), by stimulat-ing protein synthesis, angiogenesis, mitochondrial biogenesis, anti-inflammatory, and anti-oxidative effects that are involved to enhance the performance and improved quality of life. Despite the benefits of exercise, the intricacies of their underlying molecular mechanisms remain largely unknown. Noncoding RNAs (ncRNAs) have been recognized as a major regulatory network governing gene expression in several physiological processes and appeared as pivotal modulators in a myriad of cardiovascular processes under physiological and pathological conditions. However, little is known about ncRNA expression and role in response to exercise. Here we review the current understanding of the ncRNA role in exercise-induced adaptations focused on the cardiovascular system and address their potential role in clinical applications for cardiovascular diseases.","PeriodicalId":432485,"journal":{"name":"Muscle Cells - Recent Advances and Future Perspectives","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Noncoding RNAs in the Cardiovascular System: Exercise Training Effects\",\"authors\":\"N. P. Pereira, C. Gatto, E. Oliveira, T. Fernandes\",\"doi\":\"10.5772/intechopen.86054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exercise training (ET) represents a non-pharmacological treatment that can attenuate or even reverse the process of cardiovascular diseases (CVD), by stimulat-ing protein synthesis, angiogenesis, mitochondrial biogenesis, anti-inflammatory, and anti-oxidative effects that are involved to enhance the performance and improved quality of life. Despite the benefits of exercise, the intricacies of their underlying molecular mechanisms remain largely unknown. Noncoding RNAs (ncRNAs) have been recognized as a major regulatory network governing gene expression in several physiological processes and appeared as pivotal modulators in a myriad of cardiovascular processes under physiological and pathological conditions. However, little is known about ncRNA expression and role in response to exercise. Here we review the current understanding of the ncRNA role in exercise-induced adaptations focused on the cardiovascular system and address their potential role in clinical applications for cardiovascular diseases.\",\"PeriodicalId\":432485,\"journal\":{\"name\":\"Muscle Cells - Recent Advances and Future Perspectives\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Muscle Cells - Recent Advances and Future Perspectives\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.86054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muscle Cells - Recent Advances and Future Perspectives","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.86054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Noncoding RNAs in the Cardiovascular System: Exercise Training Effects
Exercise training (ET) represents a non-pharmacological treatment that can attenuate or even reverse the process of cardiovascular diseases (CVD), by stimulat-ing protein synthesis, angiogenesis, mitochondrial biogenesis, anti-inflammatory, and anti-oxidative effects that are involved to enhance the performance and improved quality of life. Despite the benefits of exercise, the intricacies of their underlying molecular mechanisms remain largely unknown. Noncoding RNAs (ncRNAs) have been recognized as a major regulatory network governing gene expression in several physiological processes and appeared as pivotal modulators in a myriad of cardiovascular processes under physiological and pathological conditions. However, little is known about ncRNA expression and role in response to exercise. Here we review the current understanding of the ncRNA role in exercise-induced adaptations focused on the cardiovascular system and address their potential role in clinical applications for cardiovascular diseases.