{"title":"改进玻尔兹曼机在拓扑可观测性分析中的应用","authors":"H. Mori","doi":"10.1109/ANN.1991.213462","DOIUrl":null,"url":null,"abstract":"The author presents a method for determining power system topological observability with a stochastic neural network. The proposed method is based on the Boltzmann machine that can cope with stochastic behavior of neurons. The Boltzmann machine is useful for solving combinatorial problems since it can avoid local minima. In this paper, a revised Boltzmann machine is proposed to improve the convergence characteristics. A squashing function is utilized to decrease the number of neurons in handling the inequality constraints of the topological observability problem.<<ETX>>","PeriodicalId":119713,"journal":{"name":"Proceedings of the First International Forum on Applications of Neural Networks to Power Systems","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Application of a revised Boltzmann machine to topological observability analysis\",\"authors\":\"H. Mori\",\"doi\":\"10.1109/ANN.1991.213462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The author presents a method for determining power system topological observability with a stochastic neural network. The proposed method is based on the Boltzmann machine that can cope with stochastic behavior of neurons. The Boltzmann machine is useful for solving combinatorial problems since it can avoid local minima. In this paper, a revised Boltzmann machine is proposed to improve the convergence characteristics. A squashing function is utilized to decrease the number of neurons in handling the inequality constraints of the topological observability problem.<<ETX>>\",\"PeriodicalId\":119713,\"journal\":{\"name\":\"Proceedings of the First International Forum on Applications of Neural Networks to Power Systems\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the First International Forum on Applications of Neural Networks to Power Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANN.1991.213462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First International Forum on Applications of Neural Networks to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANN.1991.213462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Application of a revised Boltzmann machine to topological observability analysis
The author presents a method for determining power system topological observability with a stochastic neural network. The proposed method is based on the Boltzmann machine that can cope with stochastic behavior of neurons. The Boltzmann machine is useful for solving combinatorial problems since it can avoid local minima. In this paper, a revised Boltzmann machine is proposed to improve the convergence characteristics. A squashing function is utilized to decrease the number of neurons in handling the inequality constraints of the topological observability problem.<>