改进玻尔兹曼机在拓扑可观测性分析中的应用

H. Mori
{"title":"改进玻尔兹曼机在拓扑可观测性分析中的应用","authors":"H. Mori","doi":"10.1109/ANN.1991.213462","DOIUrl":null,"url":null,"abstract":"The author presents a method for determining power system topological observability with a stochastic neural network. The proposed method is based on the Boltzmann machine that can cope with stochastic behavior of neurons. The Boltzmann machine is useful for solving combinatorial problems since it can avoid local minima. In this paper, a revised Boltzmann machine is proposed to improve the convergence characteristics. A squashing function is utilized to decrease the number of neurons in handling the inequality constraints of the topological observability problem.<<ETX>>","PeriodicalId":119713,"journal":{"name":"Proceedings of the First International Forum on Applications of Neural Networks to Power Systems","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Application of a revised Boltzmann machine to topological observability analysis\",\"authors\":\"H. Mori\",\"doi\":\"10.1109/ANN.1991.213462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The author presents a method for determining power system topological observability with a stochastic neural network. The proposed method is based on the Boltzmann machine that can cope with stochastic behavior of neurons. The Boltzmann machine is useful for solving combinatorial problems since it can avoid local minima. In this paper, a revised Boltzmann machine is proposed to improve the convergence characteristics. A squashing function is utilized to decrease the number of neurons in handling the inequality constraints of the topological observability problem.<<ETX>>\",\"PeriodicalId\":119713,\"journal\":{\"name\":\"Proceedings of the First International Forum on Applications of Neural Networks to Power Systems\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the First International Forum on Applications of Neural Networks to Power Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANN.1991.213462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First International Forum on Applications of Neural Networks to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANN.1991.213462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种用随机神经网络确定电力系统拓扑可观测性的方法。该方法基于玻尔兹曼机,能够处理神经元的随机行为。玻尔兹曼机可以避免局部极小值,因此对解决组合问题很有用。本文提出了一种改进的玻尔兹曼机来改善其收敛特性。在处理拓扑可观察性问题的不等式约束时,利用压缩函数来减少神经元的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of a revised Boltzmann machine to topological observability analysis
The author presents a method for determining power system topological observability with a stochastic neural network. The proposed method is based on the Boltzmann machine that can cope with stochastic behavior of neurons. The Boltzmann machine is useful for solving combinatorial problems since it can avoid local minima. In this paper, a revised Boltzmann machine is proposed to improve the convergence characteristics. A squashing function is utilized to decrease the number of neurons in handling the inequality constraints of the topological observability problem.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Finite precision error analysis for neural network learning Hybrid expert system neural network hierarchical architecture for classifying power system contingencies Neural network application to state estimation computation Short term electric load forecasting using an adaptively trained layered perceptron Neural networks for topology determination of power systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1