基于嵌入式遗传规划的演化有限状态机自动目标检测

K. Benson
{"title":"基于嵌入式遗传规划的演化有限状态机自动目标检测","authors":"K. Benson","doi":"10.1109/CEC.2000.870838","DOIUrl":null,"url":null,"abstract":"This paper presents a model comprising Finite State Machines (FSMs) with embedded Genetic Programs (GPs) which co-evolve to perform the task of Automatic Target Detection (ATD). The fusion of an FSM and GPs allows for a control structure (main program), the FSM, and sub-programs, the GPs, to co-evolve in a symbiotic relationship. The GP outputs along with the FSM state transition levels are used to construct confidence intervals that enable each pixel within the image to be classified as either target or non-target, or to cause a state transition to take place and further analysis of the pixel to be performed. The algorithms produced using this method consist of nominally four GPs, with a typical node cardinality of less than ten, that are executed in an order dictated by the FSM. The results of the experimentation performed are compared to those obtained in two independent studies of the same problem using Kohonen neural networks and a two stage genetic programming strategy.","PeriodicalId":218136,"journal":{"name":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Evolving finite state machines with embedded genetic programming for automatic target detection\",\"authors\":\"K. Benson\",\"doi\":\"10.1109/CEC.2000.870838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a model comprising Finite State Machines (FSMs) with embedded Genetic Programs (GPs) which co-evolve to perform the task of Automatic Target Detection (ATD). The fusion of an FSM and GPs allows for a control structure (main program), the FSM, and sub-programs, the GPs, to co-evolve in a symbiotic relationship. The GP outputs along with the FSM state transition levels are used to construct confidence intervals that enable each pixel within the image to be classified as either target or non-target, or to cause a state transition to take place and further analysis of the pixel to be performed. The algorithms produced using this method consist of nominally four GPs, with a typical node cardinality of less than ten, that are executed in an order dictated by the FSM. The results of the experimentation performed are compared to those obtained in two independent studies of the same problem using Kohonen neural networks and a two stage genetic programming strategy.\",\"PeriodicalId\":218136,\"journal\":{\"name\":\"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2000.870838\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2000.870838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

本文提出了一个由有限状态机(FSMs)和嵌入式遗传程序(GPs)组成的模型,它们共同进化来执行自动目标检测(ATD)任务。FSM和GPs的融合允许一个控制结构(主程序),FSM和子程序,GPs在共生关系中共同进化。GP输出与FSM状态转换级别一起用于构建置信区间,使图像中的每个像素能够被分类为目标或非目标,或者导致状态转换发生并对像素进行进一步分析。使用这种方法生成的算法由名义上的四个gp组成,典型的节点基数小于10,它们按照FSM指定的顺序执行。所进行的实验结果与使用Kohonen神经网络和两阶段遗传规划策略对同一问题进行的两个独立研究的结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evolving finite state machines with embedded genetic programming for automatic target detection
This paper presents a model comprising Finite State Machines (FSMs) with embedded Genetic Programs (GPs) which co-evolve to perform the task of Automatic Target Detection (ATD). The fusion of an FSM and GPs allows for a control structure (main program), the FSM, and sub-programs, the GPs, to co-evolve in a symbiotic relationship. The GP outputs along with the FSM state transition levels are used to construct confidence intervals that enable each pixel within the image to be classified as either target or non-target, or to cause a state transition to take place and further analysis of the pixel to be performed. The algorithms produced using this method consist of nominally four GPs, with a typical node cardinality of less than ten, that are executed in an order dictated by the FSM. The results of the experimentation performed are compared to those obtained in two independent studies of the same problem using Kohonen neural networks and a two stage genetic programming strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Test-case generator TCG-2 for nonlinear parameter optimisation Accelerating multi-objective control system design using a neuro-genetic approach On the use of stochastic estimator learning automata for dynamic channel allocation in broadcast networks A hierarchical distributed genetic algorithm for image segmentation Genetic learning of multi-attribute interactions in speaker verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1