约束随机匹配滤波子空间跟踪

Maissa Chagmani, B. Xerri, B. Borloz, C. Jauffret
{"title":"约束随机匹配滤波子空间跟踪","authors":"Maissa Chagmani, B. Xerri, B. Borloz, C. Jauffret","doi":"10.1109/ISPA.2017.8073596","DOIUrl":null,"url":null,"abstract":"This paper introduces a new fast algorithm named CSMFST which estimates the p-dimensional optimal subspace, i.e. where the signal-to-noise ratio is maximized in the case of n-dimensional nonstationary signals. We assume that we treat both signal and noise which are characterized by their samples. This algorithm is an SP-type algorithm and uses the same principles as the Yet Another Subspace Tracking (YAST) algorithm when estimating the covariance matrices. At each step, it estimates a matrix which spans the optimal subspace.","PeriodicalId":117602,"journal":{"name":"Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The constrained stochastic matched filter subspace tracking\",\"authors\":\"Maissa Chagmani, B. Xerri, B. Borloz, C. Jauffret\",\"doi\":\"10.1109/ISPA.2017.8073596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a new fast algorithm named CSMFST which estimates the p-dimensional optimal subspace, i.e. where the signal-to-noise ratio is maximized in the case of n-dimensional nonstationary signals. We assume that we treat both signal and noise which are characterized by their samples. This algorithm is an SP-type algorithm and uses the same principles as the Yet Another Subspace Tracking (YAST) algorithm when estimating the covariance matrices. At each step, it estimates a matrix which spans the optimal subspace.\",\"PeriodicalId\":117602,\"journal\":{\"name\":\"Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPA.2017.8073596\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPA.2017.8073596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文介绍了一种新的快速算法CSMFST,它估计p维最优子空间,即在n维非平稳信号的情况下信噪比最大的地方。我们假设我们处理的信号和噪声都是由它们的样本来表征的。该算法是一种sp型算法,在估计协方差矩阵时使用与另一个子空间跟踪(YAST)算法相同的原理。在每一步中,它估计一个跨出最优子空间的矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The constrained stochastic matched filter subspace tracking
This paper introduces a new fast algorithm named CSMFST which estimates the p-dimensional optimal subspace, i.e. where the signal-to-noise ratio is maximized in the case of n-dimensional nonstationary signals. We assume that we treat both signal and noise which are characterized by their samples. This algorithm is an SP-type algorithm and uses the same principles as the Yet Another Subspace Tracking (YAST) algorithm when estimating the covariance matrices. At each step, it estimates a matrix which spans the optimal subspace.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust real-time chest compression rate detection from smartphone video Image registration with subpixel accuracy of DCT-sign phase correlation with real subpixel shifted images Choosing an accurate number of mel frequency cepstral coefficients for audio classification purpose Blind determination of quality of JPEG compressed images Differentiating ureter and arteries in the pelvic via endoscope using deep neural network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1