一种新的变步长LMS自适应算法

Qun Niu, Tianning Chen
{"title":"一种新的变步长LMS自适应算法","authors":"Qun Niu, Tianning Chen","doi":"10.1109/CCDC.2018.8407036","DOIUrl":null,"url":null,"abstract":"LMS adaptive filtering algorithm is widely used in adaptive control system. To a certain extent the variable step size LMS algorithm can solve the conflict between convergence rate and steady-state error. It is difficult for the traditional LMS to solve. A new variable step size LMS adaptive algorithm based on the existing algorithm is proposed in this paper. By using the gradient of the filter coefficient vector W(n) the algorithm accelerates the convergence speed on the basis of ensuring the convergence accuracy. At the same time, the update formula of step size is adjusted to enhance the ability of the algorithm to resist noise interference. Finally, the MATLAB simulation results show that the algorithm has faster convergence speed, smaller steady-state error and better robustness.","PeriodicalId":409960,"journal":{"name":"2018 Chinese Control And Decision Conference (CCDC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"A new variable step size LMS adaptive algorithm\",\"authors\":\"Qun Niu, Tianning Chen\",\"doi\":\"10.1109/CCDC.2018.8407036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"LMS adaptive filtering algorithm is widely used in adaptive control system. To a certain extent the variable step size LMS algorithm can solve the conflict between convergence rate and steady-state error. It is difficult for the traditional LMS to solve. A new variable step size LMS adaptive algorithm based on the existing algorithm is proposed in this paper. By using the gradient of the filter coefficient vector W(n) the algorithm accelerates the convergence speed on the basis of ensuring the convergence accuracy. At the same time, the update formula of step size is adjusted to enhance the ability of the algorithm to resist noise interference. Finally, the MATLAB simulation results show that the algorithm has faster convergence speed, smaller steady-state error and better robustness.\",\"PeriodicalId\":409960,\"journal\":{\"name\":\"2018 Chinese Control And Decision Conference (CCDC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Chinese Control And Decision Conference (CCDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCDC.2018.8407036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Chinese Control And Decision Conference (CCDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC.2018.8407036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

LMS自适应滤波算法广泛应用于自适应控制系统中。变步长LMS算法在一定程度上解决了收敛速度与稳态误差之间的矛盾。这是传统LMS难以解决的问题。在现有算法的基础上,提出了一种新的变步长LMS自适应算法。该算法利用滤波系数向量W(n)的梯度,在保证收敛精度的基础上加快了收敛速度。同时对步长更新公式进行了调整,增强了算法抗噪声干扰的能力。最后,MATLAB仿真结果表明,该算法具有较快的收敛速度、较小的稳态误差和较好的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new variable step size LMS adaptive algorithm
LMS adaptive filtering algorithm is widely used in adaptive control system. To a certain extent the variable step size LMS algorithm can solve the conflict between convergence rate and steady-state error. It is difficult for the traditional LMS to solve. A new variable step size LMS adaptive algorithm based on the existing algorithm is proposed in this paper. By using the gradient of the filter coefficient vector W(n) the algorithm accelerates the convergence speed on the basis of ensuring the convergence accuracy. At the same time, the update formula of step size is adjusted to enhance the ability of the algorithm to resist noise interference. Finally, the MATLAB simulation results show that the algorithm has faster convergence speed, smaller steady-state error and better robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An improved K-means algorithm for reciprocating compressor fault diagnosis Bond graph modeling and fault injection of CRH5 traction system Design of human eye information detection system Multi-leak diagnosis and isolation in oil pipelines based on Unscented Kalman filter Local logic optimization algorithm for autonomous mobile robot based on fuzzy logic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1