在fpga上求解GF(2)上的大型线性方程组

Wen Wang, Jakub Szefer, R. Niederhagen
{"title":"在fpga上求解GF(2)上的大型线性方程组","authors":"Wen Wang, Jakub Szefer, R. Niederhagen","doi":"10.1109/ReConFig.2016.7857188","DOIUrl":null,"url":null,"abstract":"This paper presents an efficient systolic line architecture for solving large systems of linear equations using Gaussian elimination on the coefficient matrix. Our architecture can also be used for solving matrix inversion problems and for computing the systematic form of matrices. These are common and important computational problems that appear in areas such as cryptography and cryptanalysis. Our architecture solves these problems efficiently for any large-sized matrix over GF(2), regardless of matrix size, shape or density. We implemented and synthesized our design for Altera and Xilinx FPGAs to obtain evaluation data. The results show sub-μs performance for the Gaussian elimination of medium-sized matrices and performance on the order of tens to hundreds of ms for large matrices. In addition, this is one of the first works addressing large-sized matrices of up to 4,000 × 8,000 elements and therefore is suitable for post-quantum cryptographic schemes that require handling such large matrices.","PeriodicalId":431909,"journal":{"name":"2016 International Conference on ReConFigurable Computing and FPGAs (ReConFig)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Solving large systems of linear equations over GF(2) on FPGAs\",\"authors\":\"Wen Wang, Jakub Szefer, R. Niederhagen\",\"doi\":\"10.1109/ReConFig.2016.7857188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an efficient systolic line architecture for solving large systems of linear equations using Gaussian elimination on the coefficient matrix. Our architecture can also be used for solving matrix inversion problems and for computing the systematic form of matrices. These are common and important computational problems that appear in areas such as cryptography and cryptanalysis. Our architecture solves these problems efficiently for any large-sized matrix over GF(2), regardless of matrix size, shape or density. We implemented and synthesized our design for Altera and Xilinx FPGAs to obtain evaluation data. The results show sub-μs performance for the Gaussian elimination of medium-sized matrices and performance on the order of tens to hundreds of ms for large matrices. In addition, this is one of the first works addressing large-sized matrices of up to 4,000 × 8,000 elements and therefore is suitable for post-quantum cryptographic schemes that require handling such large matrices.\",\"PeriodicalId\":431909,\"journal\":{\"name\":\"2016 International Conference on ReConFigurable Computing and FPGAs (ReConFig)\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on ReConFigurable Computing and FPGAs (ReConFig)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ReConFig.2016.7857188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on ReConFigurable Computing and FPGAs (ReConFig)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ReConFig.2016.7857188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文提出了一种利用高斯消元法对系数矩阵求解大型线性方程组的有效收缩线结构。我们的体系结构也可以用于解决矩阵反演问题和计算矩阵的系统形式。这些是在密码学和密码分析等领域出现的常见且重要的计算问题。我们的架构有效地解决了GF(2)上任何大尺寸矩阵的这些问题,无论矩阵大小、形状或密度如何。我们在Altera和Xilinx fpga上实现并综合了我们的设计,以获得评估数据。结果表明,中等矩阵的高斯消去性能为亚μs,大矩阵的高斯消去性能为几十到几百ms。此外,这是解决高达4,000 × 8,000个元素的大型矩阵的首批工作之一,因此适用于需要处理如此大矩阵的后量子加密方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Solving large systems of linear equations over GF(2) on FPGAs
This paper presents an efficient systolic line architecture for solving large systems of linear equations using Gaussian elimination on the coefficient matrix. Our architecture can also be used for solving matrix inversion problems and for computing the systematic form of matrices. These are common and important computational problems that appear in areas such as cryptography and cryptanalysis. Our architecture solves these problems efficiently for any large-sized matrix over GF(2), regardless of matrix size, shape or density. We implemented and synthesized our design for Altera and Xilinx FPGAs to obtain evaluation data. The results show sub-μs performance for the Gaussian elimination of medium-sized matrices and performance on the order of tens to hundreds of ms for large matrices. In addition, this is one of the first works addressing large-sized matrices of up to 4,000 × 8,000 elements and therefore is suitable for post-quantum cryptographic schemes that require handling such large matrices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal processor interface for CGRA-based accelerators implemented on FPGAs Automatic framework to generate reconfigurable accelerators for option pricing applications Hobbit — Smaller but faster than a dwarf: Revisiting lightweight SHA-3 FPGA implementations FPGA implementation of optimized XBM specifications by transformation for AFSMs Data-rate-aware FPGA-based acceleration framework for streaming applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1