从文本数据库获取知识的机器学习方法

Y. Sakakibara, Kazuo Misue, Takeshi Koshiba
{"title":"从文本数据库获取知识的机器学习方法","authors":"Y. Sakakibara, Kazuo Misue, Takeshi Koshiba","doi":"10.1080/10447319609526154","DOIUrl":null,"url":null,"abstract":"The rapid growth of data in large databases, such as text databases and scientific databases, requires efficient computer methods for automating analyses of the data with the goal of acquiring knowledges or making discoveries. Because the analyses of data are generally so expensive, most parts in databases remains as raw, unanalyzed primary data. Technology from machine learning (ML) will offer efficient tools for the intelligent analyses of the data using generalization ability. Generalization is an important ability specific to inductive learning that will predict unseen data with high accuracy based on learned concepts from training examples. In this article, we apply ML to text‐database analyses and knowledge acquisitions from text databases. We propose a completely new approach to the problem of text classification and extracting keywords by using ML techniques. We introduce a class of representations for classifying text data based on decision trees; (i.e., decision trees over attributes on strings)...","PeriodicalId":208962,"journal":{"name":"Int. J. Hum. Comput. Interact.","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A machine learning approach to knowledge acquisitions from text databases\",\"authors\":\"Y. Sakakibara, Kazuo Misue, Takeshi Koshiba\",\"doi\":\"10.1080/10447319609526154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid growth of data in large databases, such as text databases and scientific databases, requires efficient computer methods for automating analyses of the data with the goal of acquiring knowledges or making discoveries. Because the analyses of data are generally so expensive, most parts in databases remains as raw, unanalyzed primary data. Technology from machine learning (ML) will offer efficient tools for the intelligent analyses of the data using generalization ability. Generalization is an important ability specific to inductive learning that will predict unseen data with high accuracy based on learned concepts from training examples. In this article, we apply ML to text‐database analyses and knowledge acquisitions from text databases. We propose a completely new approach to the problem of text classification and extracting keywords by using ML techniques. We introduce a class of representations for classifying text data based on decision trees; (i.e., decision trees over attributes on strings)...\",\"PeriodicalId\":208962,\"journal\":{\"name\":\"Int. J. Hum. Comput. Interact.\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Hum. Comput. Interact.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10447319609526154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Hum. Comput. Interact.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10447319609526154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

大型数据库(如文本数据库和科学数据库)中数据的快速增长,需要有效的计算机方法来自动分析数据,以获取知识或做出发现。由于对数据的分析通常非常昂贵,因此数据库中的大多数部分仍然是原始的、未分析的主要数据。机器学习(ML)技术将为利用泛化能力对数据进行智能分析提供有效的工具。泛化是归纳学习的一项重要能力,它将基于从训练示例中学习到的概念,以高精度预测未见过的数据。在本文中,我们将机器学习应用于文本数据库分析和从文本数据库获取知识。本文提出了一种全新的基于机器学习的文本分类和关键词提取方法。我们引入了一类基于决策树的文本数据分类表示;(即,字符串属性的决策树)…
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A machine learning approach to knowledge acquisitions from text databases
The rapid growth of data in large databases, such as text databases and scientific databases, requires efficient computer methods for automating analyses of the data with the goal of acquiring knowledges or making discoveries. Because the analyses of data are generally so expensive, most parts in databases remains as raw, unanalyzed primary data. Technology from machine learning (ML) will offer efficient tools for the intelligent analyses of the data using generalization ability. Generalization is an important ability specific to inductive learning that will predict unseen data with high accuracy based on learned concepts from training examples. In this article, we apply ML to text‐database analyses and knowledge acquisitions from text databases. We propose a completely new approach to the problem of text classification and extracting keywords by using ML techniques. We introduce a class of representations for classifying text data based on decision trees; (i.e., decision trees over attributes on strings)...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Usability Inspection by Metaphors of Human Thinking Compared to Heuristic Evaluation Templates for Search Queries: A User-Centered Feature for Improving Web Search Tools A Corporate Style Guide That Includes Domain Knowledge Identification of an Acceptable Mixture of Key and Speech Inputs in Bimodal Interfaces Decision Support for Indexing and Retrieval of Information in Hypertext Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1