{"title":"从文本数据库获取知识的机器学习方法","authors":"Y. Sakakibara, Kazuo Misue, Takeshi Koshiba","doi":"10.1080/10447319609526154","DOIUrl":null,"url":null,"abstract":"The rapid growth of data in large databases, such as text databases and scientific databases, requires efficient computer methods for automating analyses of the data with the goal of acquiring knowledges or making discoveries. Because the analyses of data are generally so expensive, most parts in databases remains as raw, unanalyzed primary data. Technology from machine learning (ML) will offer efficient tools for the intelligent analyses of the data using generalization ability. Generalization is an important ability specific to inductive learning that will predict unseen data with high accuracy based on learned concepts from training examples. In this article, we apply ML to text‐database analyses and knowledge acquisitions from text databases. We propose a completely new approach to the problem of text classification and extracting keywords by using ML techniques. We introduce a class of representations for classifying text data based on decision trees; (i.e., decision trees over attributes on strings)...","PeriodicalId":208962,"journal":{"name":"Int. J. Hum. Comput. Interact.","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A machine learning approach to knowledge acquisitions from text databases\",\"authors\":\"Y. Sakakibara, Kazuo Misue, Takeshi Koshiba\",\"doi\":\"10.1080/10447319609526154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid growth of data in large databases, such as text databases and scientific databases, requires efficient computer methods for automating analyses of the data with the goal of acquiring knowledges or making discoveries. Because the analyses of data are generally so expensive, most parts in databases remains as raw, unanalyzed primary data. Technology from machine learning (ML) will offer efficient tools for the intelligent analyses of the data using generalization ability. Generalization is an important ability specific to inductive learning that will predict unseen data with high accuracy based on learned concepts from training examples. In this article, we apply ML to text‐database analyses and knowledge acquisitions from text databases. We propose a completely new approach to the problem of text classification and extracting keywords by using ML techniques. We introduce a class of representations for classifying text data based on decision trees; (i.e., decision trees over attributes on strings)...\",\"PeriodicalId\":208962,\"journal\":{\"name\":\"Int. J. Hum. Comput. Interact.\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Hum. Comput. Interact.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10447319609526154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Hum. Comput. Interact.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10447319609526154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A machine learning approach to knowledge acquisitions from text databases
The rapid growth of data in large databases, such as text databases and scientific databases, requires efficient computer methods for automating analyses of the data with the goal of acquiring knowledges or making discoveries. Because the analyses of data are generally so expensive, most parts in databases remains as raw, unanalyzed primary data. Technology from machine learning (ML) will offer efficient tools for the intelligent analyses of the data using generalization ability. Generalization is an important ability specific to inductive learning that will predict unseen data with high accuracy based on learned concepts from training examples. In this article, we apply ML to text‐database analyses and knowledge acquisitions from text databases. We propose a completely new approach to the problem of text classification and extracting keywords by using ML techniques. We introduce a class of representations for classifying text data based on decision trees; (i.e., decision trees over attributes on strings)...