高效的一键浏览大型轨迹集

Benjamin B. Krogh, O. Andersen, Edwin Lewis-Kelham, K. Torp
{"title":"高效的一键浏览大型轨迹集","authors":"Benjamin B. Krogh, O. Andersen, Edwin Lewis-Kelham, K. Torp","doi":"10.1145/2666310.2666371","DOIUrl":null,"url":null,"abstract":"Traffic researchers, planners, and analysts want a simple way to query the large quantities of GPS trajectories collected from vehicles. In addition, users expect the results to be presented immediately even when querying very large transportation networks with huge trajectory data sets. This paper presents a novel query type called sheaf, where users can browse trajectory data sets using a single mouse click. Sheaves are very versatile and can be used for location-based advertising, travel-time analysis, intersection analysis, and reachability analysis (isochrones). A novel in-memory trajectory index compresses the data by a factor of 12.4 and enables execution of sheaf queries in 40 ms. This is up to 2 orders of magnitude faster than existing work. We demonstrate the simplicity, versatility, and efficiency of sheaf queries using a real-world trajectory set consisting of 2.7 million trajectories (1.36 billion GPS records) and a network with 1.5 million edges.","PeriodicalId":153031,"journal":{"name":"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Efficient one-click browsing of large trajectory sets\",\"authors\":\"Benjamin B. Krogh, O. Andersen, Edwin Lewis-Kelham, K. Torp\",\"doi\":\"10.1145/2666310.2666371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traffic researchers, planners, and analysts want a simple way to query the large quantities of GPS trajectories collected from vehicles. In addition, users expect the results to be presented immediately even when querying very large transportation networks with huge trajectory data sets. This paper presents a novel query type called sheaf, where users can browse trajectory data sets using a single mouse click. Sheaves are very versatile and can be used for location-based advertising, travel-time analysis, intersection analysis, and reachability analysis (isochrones). A novel in-memory trajectory index compresses the data by a factor of 12.4 and enables execution of sheaf queries in 40 ms. This is up to 2 orders of magnitude faster than existing work. We demonstrate the simplicity, versatility, and efficiency of sheaf queries using a real-world trajectory set consisting of 2.7 million trajectories (1.36 billion GPS records) and a network with 1.5 million edges.\",\"PeriodicalId\":153031,\"journal\":{\"name\":\"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2666310.2666371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2666310.2666371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

交通研究人员、规划人员和分析人员希望有一种简单的方法来查询从车辆收集的大量GPS轨迹。此外,即使在查询具有巨大轨迹数据集的大型交通网络时,用户也希望结果能够立即呈现。本文提出了一种新的查询类型,称为轴,其中用户可以浏览轨迹数据集使用一个单一的鼠标点击。滑轮非常通用,可用于基于位置的广告、旅行时间分析、交叉分析和可达性分析(等时线)。一种新的内存轨迹索引将数据压缩了12.4倍,并能在40毫秒内执行堆查询。这比现有的工作快了两个数量级。我们使用一个包含270万条轨迹(13.6亿GPS记录)和一个包含150万条边的网络的真实轨迹集来演示束查询的简单性、多功能性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient one-click browsing of large trajectory sets
Traffic researchers, planners, and analysts want a simple way to query the large quantities of GPS trajectories collected from vehicles. In addition, users expect the results to be presented immediately even when querying very large transportation networks with huge trajectory data sets. This paper presents a novel query type called sheaf, where users can browse trajectory data sets using a single mouse click. Sheaves are very versatile and can be used for location-based advertising, travel-time analysis, intersection analysis, and reachability analysis (isochrones). A novel in-memory trajectory index compresses the data by a factor of 12.4 and enables execution of sheaf queries in 40 ms. This is up to 2 orders of magnitude faster than existing work. We demonstrate the simplicity, versatility, and efficiency of sheaf queries using a real-world trajectory set consisting of 2.7 million trajectories (1.36 billion GPS records) and a network with 1.5 million edges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A parallel query engine for interactive spatiotemporal analysis Spatio-temporal trajectory simplification for inferring travel paths Parameterized spatial query processing based on social probabilistic clustering Accurate and efficient map matching for challenging environments Top-k point of interest retrieval using standard indexes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1