vnli - VLSP2021:基于数据增强的预训练语言模型的越英自然语言推理实证研究

Thin Dang Van, D. Hao, N. Nguyen, Luân Đình Ngô, Kiến Lê Hiếu Ngô
{"title":"vnli - VLSP2021:基于数据增强的预训练语言模型的越英自然语言推理实证研究","authors":"Thin Dang Van, D. Hao, N. Nguyen, Luân Đình Ngô, Kiến Lê Hiếu Ngô","doi":"10.25073/2588-1086/vnucsce.330","DOIUrl":null,"url":null,"abstract":"In this paper, we describe an empirical study of data augmentation techniques with various pre-trained language models on the bilingual dataset which was presented at the VLSP 2021 - Vietnamese and English-Vietnamese Textual Entailment. We apply the machine translation tool to generate new training set from original training data and then  investigate and compare the effectiveness of a monolingual and multilingual model on the new data set. Our experimental results show that fine-tuning a pre-trained multilingual language XLM-R model with an augmented training set gives the best performance. Our system was ranked third in the shared-task VLSP 2021 with the  F1-score of about 0.88.","PeriodicalId":416488,"journal":{"name":"VNU Journal of Science: Computer Science and Communication Engineering","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"vnNLI - VLSP2021: An Empirical Study on Vietnamese-English Natural Language Inference Based on Pretrained Language Models with Data Augmentation\",\"authors\":\"Thin Dang Van, D. Hao, N. Nguyen, Luân Đình Ngô, Kiến Lê Hiếu Ngô\",\"doi\":\"10.25073/2588-1086/vnucsce.330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we describe an empirical study of data augmentation techniques with various pre-trained language models on the bilingual dataset which was presented at the VLSP 2021 - Vietnamese and English-Vietnamese Textual Entailment. We apply the machine translation tool to generate new training set from original training data and then  investigate and compare the effectiveness of a monolingual and multilingual model on the new data set. Our experimental results show that fine-tuning a pre-trained multilingual language XLM-R model with an augmented training set gives the best performance. Our system was ranked third in the shared-task VLSP 2021 with the  F1-score of about 0.88.\",\"PeriodicalId\":416488,\"journal\":{\"name\":\"VNU Journal of Science: Computer Science and Communication Engineering\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VNU Journal of Science: Computer Science and Communication Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25073/2588-1086/vnucsce.330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VNU Journal of Science: Computer Science and Communication Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25073/2588-1086/vnucsce.330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们描述了在VLSP 2021 -越南语和英语-越南语文本蕴意上发表的双语数据集上使用各种预训练语言模型进行数据增强技术的实证研究。我们使用机器翻译工具从原始训练数据生成新的训练集,然后研究和比较单语言和多语言模型在新数据集上的有效性。实验结果表明,使用增强训练集对预训练的多语言XLM-R模型进行微调可以获得最佳性能。我们的系统在共享任务VLSP 2021中排名第三,f1得分约为0.88。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
vnNLI - VLSP2021: An Empirical Study on Vietnamese-English Natural Language Inference Based on Pretrained Language Models with Data Augmentation
In this paper, we describe an empirical study of data augmentation techniques with various pre-trained language models on the bilingual dataset which was presented at the VLSP 2021 - Vietnamese and English-Vietnamese Textual Entailment. We apply the machine translation tool to generate new training set from original training data and then  investigate and compare the effectiveness of a monolingual and multilingual model on the new data set. Our experimental results show that fine-tuning a pre-trained multilingual language XLM-R model with an augmented training set gives the best performance. Our system was ranked third in the shared-task VLSP 2021 with the  F1-score of about 0.88.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Aspect-Category based Sentiment Analysis with Unified Sequence-To-Sequence Transfer Transformers A Bandwidth-Efficient High-Performance RTL-Microarchitecture of 2D-Convolution for Deep Neural Networks Noisy-label propagation for Video Anomaly Detection with Graph Transformer Network FRSL: A Domain Specific Language to Specify Functional Requirements A Contract-Based Specification Method for Model Transformations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1