Li Yang, Qi Ming He, Zhuo Chen, Shan Xu, Jun Zhang
{"title":"5G毫米波通信多模宽带滤波天线","authors":"Li Yang, Qi Ming He, Zhuo Chen, Shan Xu, Jun Zhang","doi":"10.1109/iWEM53379.2021.9790601","DOIUrl":null,"url":null,"abstract":"The interconnection loss between the radio frequency (RF) front-end and the antenna become prominent for system integration in the millimeter-wave (mm-wave) band, and joint design is required at the device level. Because of the higher propagation loss in the mm-wave band, the cost for communication coverage will increase sharply. This is the main impetus for the development of filtering antenna with low cost and low interconnection loss. In this paper, through the aperture sharing and mode hybridization, three adjacent modes are sequentially excited to achieve broadband characteristics. The simulation impedance bandwidth of the antenna is 24.1~28.4 GHz with a relative bandwidth of 16.4% and the peak realized gain is 5.7dBi. Radiation null can be realized at the edge of the passband with an increased coupling path between the slot and U-shaped ring, hence producing a more than 20dB out-of-band suppression.","PeriodicalId":141204,"journal":{"name":"2021 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-Mode Wideband Filtering Antenna for 5G Millimeter-Wave Communication\",\"authors\":\"Li Yang, Qi Ming He, Zhuo Chen, Shan Xu, Jun Zhang\",\"doi\":\"10.1109/iWEM53379.2021.9790601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The interconnection loss between the radio frequency (RF) front-end and the antenna become prominent for system integration in the millimeter-wave (mm-wave) band, and joint design is required at the device level. Because of the higher propagation loss in the mm-wave band, the cost for communication coverage will increase sharply. This is the main impetus for the development of filtering antenna with low cost and low interconnection loss. In this paper, through the aperture sharing and mode hybridization, three adjacent modes are sequentially excited to achieve broadband characteristics. The simulation impedance bandwidth of the antenna is 24.1~28.4 GHz with a relative bandwidth of 16.4% and the peak realized gain is 5.7dBi. Radiation null can be realized at the edge of the passband with an increased coupling path between the slot and U-shaped ring, hence producing a more than 20dB out-of-band suppression.\",\"PeriodicalId\":141204,\"journal\":{\"name\":\"2021 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iWEM53379.2021.9790601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iWEM53379.2021.9790601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-Mode Wideband Filtering Antenna for 5G Millimeter-Wave Communication
The interconnection loss between the radio frequency (RF) front-end and the antenna become prominent for system integration in the millimeter-wave (mm-wave) band, and joint design is required at the device level. Because of the higher propagation loss in the mm-wave band, the cost for communication coverage will increase sharply. This is the main impetus for the development of filtering antenna with low cost and low interconnection loss. In this paper, through the aperture sharing and mode hybridization, three adjacent modes are sequentially excited to achieve broadband characteristics. The simulation impedance bandwidth of the antenna is 24.1~28.4 GHz with a relative bandwidth of 16.4% and the peak realized gain is 5.7dBi. Radiation null can be realized at the edge of the passband with an increased coupling path between the slot and U-shaped ring, hence producing a more than 20dB out-of-band suppression.