基于核的SVM不平衡数据集分类SMOTE

Josey Mathew, Ming Luo, C. Pang, H. Chan
{"title":"基于核的SVM不平衡数据集分类SMOTE","authors":"Josey Mathew, Ming Luo, C. Pang, H. Chan","doi":"10.1109/IECON.2015.7392251","DOIUrl":null,"url":null,"abstract":"Datasets with an imbalanced class distribution pose a severe challenge to traditional learning algorithms that are designed to improve overall classification accuracy. Preprocessing methods like Synthetic Minority Over-sampling Technique (SMOTE) address this problem by generating data points in the input space to balance the training dataset. However, such artificial sampling methods can distort the performance of Support Vector Machine (SVM) classifiers that operate in a kernel induced feature space. This paper proposes a kernel-based SMOTE (K-SMOTE) algorithm that directly generates synthetically minority data points in the feature space of SVM classifier. The new data points are added by augmenting the original Gram matrix based on neighbourhood information in the feature space. The proposed algorithm is statistically shown to improve performance on 51 benchmark datasets. K-SMOTE is further applied to predict the stage of degradation in a semiconductor etching chamber where it achieves a higher accuracy for the imbalanced faulty stages.","PeriodicalId":190550,"journal":{"name":"IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society","volume":"C-28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":"{\"title\":\"Kernel-based SMOTE for SVM classification of imbalanced datasets\",\"authors\":\"Josey Mathew, Ming Luo, C. Pang, H. Chan\",\"doi\":\"10.1109/IECON.2015.7392251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Datasets with an imbalanced class distribution pose a severe challenge to traditional learning algorithms that are designed to improve overall classification accuracy. Preprocessing methods like Synthetic Minority Over-sampling Technique (SMOTE) address this problem by generating data points in the input space to balance the training dataset. However, such artificial sampling methods can distort the performance of Support Vector Machine (SVM) classifiers that operate in a kernel induced feature space. This paper proposes a kernel-based SMOTE (K-SMOTE) algorithm that directly generates synthetically minority data points in the feature space of SVM classifier. The new data points are added by augmenting the original Gram matrix based on neighbourhood information in the feature space. The proposed algorithm is statistically shown to improve performance on 51 benchmark datasets. K-SMOTE is further applied to predict the stage of degradation in a semiconductor etching chamber where it achieves a higher accuracy for the imbalanced faulty stages.\",\"PeriodicalId\":190550,\"journal\":{\"name\":\"IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society\",\"volume\":\"C-28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"67\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECON.2015.7392251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON.2015.7392251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 67

摘要

类分布不平衡的数据集对旨在提高整体分类精度的传统学习算法提出了严峻的挑战。预处理方法如合成少数派过采样技术(SMOTE)通过在输入空间中生成数据点来平衡训练数据集来解决这个问题。然而,这种人工采样方法会扭曲在核诱导特征空间中运行的支持向量机(SVM)分类器的性能。本文提出了一种基于核的SMOTE (K-SMOTE)算法,该算法直接在SVM分类器的特征空间中合成少数派数据点。基于特征空间中的邻域信息,对原始Gram矩阵进行增广,从而增加新的数据点。在51个基准数据集上的统计结果表明,该算法提高了性能。K-SMOTE进一步应用于预测半导体蚀刻室的退化阶段,在那里它对不平衡故障阶段达到了更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Kernel-based SMOTE for SVM classification of imbalanced datasets
Datasets with an imbalanced class distribution pose a severe challenge to traditional learning algorithms that are designed to improve overall classification accuracy. Preprocessing methods like Synthetic Minority Over-sampling Technique (SMOTE) address this problem by generating data points in the input space to balance the training dataset. However, such artificial sampling methods can distort the performance of Support Vector Machine (SVM) classifiers that operate in a kernel induced feature space. This paper proposes a kernel-based SMOTE (K-SMOTE) algorithm that directly generates synthetically minority data points in the feature space of SVM classifier. The new data points are added by augmenting the original Gram matrix based on neighbourhood information in the feature space. The proposed algorithm is statistically shown to improve performance on 51 benchmark datasets. K-SMOTE is further applied to predict the stage of degradation in a semiconductor etching chamber where it achieves a higher accuracy for the imbalanced faulty stages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new combined bidirectional boost converter and battery charger for electric vehicles Mixed strategist dynamics application to electrical vehicle distributed load scheduling DC fault isolation study of bidirectional dual active bridge DC/DC converter for DC transmission grid application A combined switched reluctance motor drive and battery charger for electric vehicles Experimental validation of a proposed single-phase five-level active rectifier operating with model predictive current control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1