基于本体建模和迁移学习的陶瓷类型识别算法

Yang Yang, Hui Wu, Dingguo Yu, Chengpeng Yang
{"title":"基于本体建模和迁移学习的陶瓷类型识别算法","authors":"Yang Yang, Hui Wu, Dingguo Yu, Chengpeng Yang","doi":"10.1109/cost57098.2022.00011","DOIUrl":null,"url":null,"abstract":"Image classification is the key research in the field of computer vision. Based on real data, this paper adopts the method of image ontology modeling and image transfer learning. In this paper, the image knowledge is transferred to the experimental data, and the neural network is trained by knowledge verification. This paper proposes a ceramic type recognition algorithm based on ontology modeling and transfer learning(ICOT) for image classification. Experimental results show that the proposed algorithm is better than the traditional algorithm. This paper provides a general idea for similar problems.","PeriodicalId":135595,"journal":{"name":"2022 International Conference on Culture-Oriented Science and Technology (CoST)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ceramic Type Recognition Algorithm Based on Ontology Modeling and Transfer Learning\",\"authors\":\"Yang Yang, Hui Wu, Dingguo Yu, Chengpeng Yang\",\"doi\":\"10.1109/cost57098.2022.00011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image classification is the key research in the field of computer vision. Based on real data, this paper adopts the method of image ontology modeling and image transfer learning. In this paper, the image knowledge is transferred to the experimental data, and the neural network is trained by knowledge verification. This paper proposes a ceramic type recognition algorithm based on ontology modeling and transfer learning(ICOT) for image classification. Experimental results show that the proposed algorithm is better than the traditional algorithm. This paper provides a general idea for similar problems.\",\"PeriodicalId\":135595,\"journal\":{\"name\":\"2022 International Conference on Culture-Oriented Science and Technology (CoST)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Culture-Oriented Science and Technology (CoST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/cost57098.2022.00011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Culture-Oriented Science and Technology (CoST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cost57098.2022.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图像分类是计算机视觉领域的研究热点。本文以实际数据为基础,采用图像本体建模和图像迁移学习的方法。本文将图像知识转移到实验数据中,通过知识验证对神经网络进行训练。提出了一种基于本体建模和迁移学习(ICOT)的陶瓷类型识别算法。实验结果表明,该算法优于传统算法。本文为类似问题提供了一个总体思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ceramic Type Recognition Algorithm Based on Ontology Modeling and Transfer Learning
Image classification is the key research in the field of computer vision. Based on real data, this paper adopts the method of image ontology modeling and image transfer learning. In this paper, the image knowledge is transferred to the experimental data, and the neural network is trained by knowledge verification. This paper proposes a ceramic type recognition algorithm based on ontology modeling and transfer learning(ICOT) for image classification. Experimental results show that the proposed algorithm is better than the traditional algorithm. This paper provides a general idea for similar problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Vision Enhancement Network for Image Quality Assessment Analysis and Application of Tourists’ Sentiment Based on Hotel Comment Data Automatic Image Generation of Peking Opera Face using StyleGAN2 Analysis of Emotional Influencing Factors of Online Travel Reviews Based on BiLSTM-CNN Performance comparison of deep learning methods on hand bone segmentation and bone age assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1