{"title":"基于改进非递归离散双正交小波变换的乳腺病变分类","authors":"Hsieh-Wei Lee, S. Lei, K. Hung, Bin-Da Liu","doi":"10.1109/BIOCAS.2007.4463349","DOIUrl":null,"url":null,"abstract":"Infiltrative nature on ultrasound images is a significant feature implying a malignant breast lesion. Characterizing the infiltrative nature with high effective and computationally inexpensive features is crucial for realizing computer-aided diagnosis. In this paper, the infiltrative nature is sighted as irregularly local variance in a 1-D signal, which is induced due to the existence of some high octave energies. These energies are extractable by a modified 1-D non-recursive discrete biorthogonal wavelet transform. The experimental results show that the proposed wavelet-based features have high individual feature efficacy and the capability of improving combined feature performance.","PeriodicalId":273819,"journal":{"name":"2007 IEEE Biomedical Circuits and Systems Conference","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Breast Lesions Classification Using Modified Non-Recursive Discrete Biorthogonal Wavelet Transform\",\"authors\":\"Hsieh-Wei Lee, S. Lei, K. Hung, Bin-Da Liu\",\"doi\":\"10.1109/BIOCAS.2007.4463349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Infiltrative nature on ultrasound images is a significant feature implying a malignant breast lesion. Characterizing the infiltrative nature with high effective and computationally inexpensive features is crucial for realizing computer-aided diagnosis. In this paper, the infiltrative nature is sighted as irregularly local variance in a 1-D signal, which is induced due to the existence of some high octave energies. These energies are extractable by a modified 1-D non-recursive discrete biorthogonal wavelet transform. The experimental results show that the proposed wavelet-based features have high individual feature efficacy and the capability of improving combined feature performance.\",\"PeriodicalId\":273819,\"journal\":{\"name\":\"2007 IEEE Biomedical Circuits and Systems Conference\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Biomedical Circuits and Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOCAS.2007.4463349\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Biomedical Circuits and Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2007.4463349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Breast Lesions Classification Using Modified Non-Recursive Discrete Biorthogonal Wavelet Transform
Infiltrative nature on ultrasound images is a significant feature implying a malignant breast lesion. Characterizing the infiltrative nature with high effective and computationally inexpensive features is crucial for realizing computer-aided diagnosis. In this paper, the infiltrative nature is sighted as irregularly local variance in a 1-D signal, which is induced due to the existence of some high octave energies. These energies are extractable by a modified 1-D non-recursive discrete biorthogonal wavelet transform. The experimental results show that the proposed wavelet-based features have high individual feature efficacy and the capability of improving combined feature performance.