B. Medgyes, I. Hajdu, R. Berényi, L. Gál, M. Ruszinkó, G. Harsányi
{"title":"微电子中银在常规和可生物降解衬底上的电化学迁移","authors":"B. Medgyes, I. Hajdu, R. Berényi, L. Gál, M. Ruszinkó, G. Harsányi","doi":"10.1109/ISSE.2014.6887604","DOIUrl":null,"url":null,"abstract":"Water drop (WD) test and a contact angle measurement method were used to investigate the electrochemical migration (ECM) behavior on different microelectronic substrates with silver conductor lines in all cases. Environment friendly substrates were also investigated in this study as possible candidates of the conventional ones. ECM is kind of short failure phenomenon, which can lead to series defect in case of operating microcircuits, when moisture appears on/in a conductor-dielectric-conductor system. The results show that the novel biodegradable substrate patterns can have a significant higher ECM risk comparing to the conventional ones. The main causes can be the different wetting behavior and the different conductor line accuracy of the technological processes.","PeriodicalId":375711,"journal":{"name":"Proceedings of the 2014 37th International Spring Seminar on Electronics Technology","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Electrochemical migration of silver on conventional and biodegradable substrates in microelectronics\",\"authors\":\"B. Medgyes, I. Hajdu, R. Berényi, L. Gál, M. Ruszinkó, G. Harsányi\",\"doi\":\"10.1109/ISSE.2014.6887604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Water drop (WD) test and a contact angle measurement method were used to investigate the electrochemical migration (ECM) behavior on different microelectronic substrates with silver conductor lines in all cases. Environment friendly substrates were also investigated in this study as possible candidates of the conventional ones. ECM is kind of short failure phenomenon, which can lead to series defect in case of operating microcircuits, when moisture appears on/in a conductor-dielectric-conductor system. The results show that the novel biodegradable substrate patterns can have a significant higher ECM risk comparing to the conventional ones. The main causes can be the different wetting behavior and the different conductor line accuracy of the technological processes.\",\"PeriodicalId\":375711,\"journal\":{\"name\":\"Proceedings of the 2014 37th International Spring Seminar on Electronics Technology\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2014 37th International Spring Seminar on Electronics Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSE.2014.6887604\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 37th International Spring Seminar on Electronics Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSE.2014.6887604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electrochemical migration of silver on conventional and biodegradable substrates in microelectronics
Water drop (WD) test and a contact angle measurement method were used to investigate the electrochemical migration (ECM) behavior on different microelectronic substrates with silver conductor lines in all cases. Environment friendly substrates were also investigated in this study as possible candidates of the conventional ones. ECM is kind of short failure phenomenon, which can lead to series defect in case of operating microcircuits, when moisture appears on/in a conductor-dielectric-conductor system. The results show that the novel biodegradable substrate patterns can have a significant higher ECM risk comparing to the conventional ones. The main causes can be the different wetting behavior and the different conductor line accuracy of the technological processes.